Abstract

We developed a high power supercontinuum source at a center wavelength of 1.7 μm to demonstrate highly penetrative ultrahigh-resolution optical coherence tomography (UHR-OCT). A single-wall carbon nanotube dispersed in polyimide film was used as a transparent saturable absorber in the cavity configuration and a high-repetition-rate ultrashort-pulse fiber laser was realized. The developed SC source had an output power of 60 mW, a bandwidth of 242 nm full-width at half maximum, and a repetition rate of 110 MHz. The average power and repetition rate were approximately twice as large as those of our previous SC source [20]. Using the developed SC source, UHR-OCT imaging was demonstrated. A sensitivity of 105 dB and an axial resolution of 3.2 μm in biological tissue were achieved. We compared the UHR-OCT images of some biological tissue samples measured with the developed SC source, the previous one, and one operating in the 1.3 μm wavelength region. We confirmed that the developed SC source had improved sensitivity and penetration depth for low-water-absorption samples.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
    [CrossRef]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
    [CrossRef] [PubMed]
  4. R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
    [CrossRef] [PubMed]
  5. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express13(23), 9480–9491 (2005).
    [CrossRef] [PubMed]
  6. M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
    [CrossRef]
  7. B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998).
    [CrossRef] [PubMed]
  8. L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000).
    [CrossRef] [PubMed]
  9. A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
    [CrossRef]
  10. G. Isenberg and M. V. Sivak., “Gastrointestinal optical coherence tomography,” Tech. Gastrointest. Endosc.5(2), 94–101 (2003).
    [CrossRef]
  11. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
    [CrossRef] [PubMed]
  12. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt.34(25), 5699–5707 (1995).
    [CrossRef] [PubMed]
  13. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
    [CrossRef] [PubMed]
  14. Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998).
    [CrossRef] [PubMed]
  15. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
    [CrossRef] [PubMed]
  16. A. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
    [CrossRef] [PubMed]
  17. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
    [CrossRef] [PubMed]
  18. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
    [CrossRef] [PubMed]
  19. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008).
    [CrossRef] [PubMed]
  20. S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011).
    [CrossRef]
  21. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express3(2), 282–294 (2012).
    [CrossRef] [PubMed]
  22. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010).
    [CrossRef] [PubMed]
  23. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008).
    [CrossRef] [PubMed]
  24. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express17(22), 20233–20241 (2009).
    [CrossRef] [PubMed]
  25. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett.11(10), 659–661 (1986).
    [CrossRef] [PubMed]
  26. N. Nishizawa and T. Goto, “Compact System of Wavelength-Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
    [CrossRef]
  27. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all fiber system,” J. Opt. Soc. Am. B24(8), 1786 (2007).
    [CrossRef]

2012 (1)

2011 (1)

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011).
[CrossRef]

2010 (2)

V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010).
[CrossRef] [PubMed]

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (2)

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all fiber system,” J. Opt. Soc. Am. B24(8), 1786 (2007).
[CrossRef]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

2006 (3)

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
[CrossRef]

A. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
[CrossRef] [PubMed]

2003 (1)

G. Isenberg and M. V. Sivak., “Gastrointestinal optical coherence tomography,” Tech. Gastrointest. Endosc.5(2), 94–101 (2003).
[CrossRef]

2001 (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

2000 (1)

L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000).
[CrossRef] [PubMed]

1999 (2)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

N. Nishizawa and T. Goto, “Compact System of Wavelength-Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
[CrossRef]

1998 (3)

B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998).
[CrossRef] [PubMed]

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998).
[CrossRef] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1986 (1)

Adachi, M.

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

Aguirre, A.

Akkin, T.

Bardenstein, D. S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Bonner, R. F.

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Bouma, B. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Brezinski, M. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Calucci, D.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Cardillo, J. A.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Castro, J. C.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Cense, B.

M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
[CrossRef] [PubMed]

Chan, R. C.

Chang, E. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Colston, B. W.

L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000).
[CrossRef] [PubMed]

B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998).
[CrossRef] [PubMed]

Costa, R. A.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Da Silva, L. B.

de Boer, J. F.

M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
[CrossRef] [PubMed]

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Everett, M. J.

L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000).
[CrossRef] [PubMed]

B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998).
[CrossRef] [PubMed]

Faber, D. J.

Farkas, D. L.

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Freitas, A. Z.

A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
[CrossRef]

Fujimoto, J. G.

A. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
[CrossRef] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gomes, A. S. L.

A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
[CrossRef]

Goto, T.

N. Nishizawa and T. Goto, “Compact System of Wavelength-Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hsiung, P.

Huang, D.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Isenberg, G.

G. Isenberg and M. V. Sivak., “Gastrointestinal optical coherence tomography,” Tech. Gastrointest. Endosc.5(2), 94–101 (2003).
[CrossRef]

Ishida, S.

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express3(2), 282–294 (2012).
[CrossRef] [PubMed]

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011).
[CrossRef]

Ito, Y.

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

Itoga, E.

Itoh, K.

Izatt, J. A.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Jones, D. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Joo, C.

Kalkman, J.

Kataura, H.

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Kobayashi, T.

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

Kodach, V. M.

Kopf, D.

Lederer, M.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Melo, L. A. S.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Mitschke, F. M.

Mollenauer, L. F.

Mujat, M.

Nakanishi, J.

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

Nathel, H.

L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000).
[CrossRef] [PubMed]

B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998).
[CrossRef] [PubMed]

Nelson, L. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Nishiura, M.

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

Nishizawa, N.

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express3(2), 282–294 (2012).
[CrossRef] [PubMed]

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011).
[CrossRef]

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express17(22), 20233–20241 (2009).
[CrossRef] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008).
[CrossRef] [PubMed]

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all fiber system,” J. Opt. Soc. Am. B24(8), 1786 (2007).
[CrossRef]

A. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
[CrossRef] [PubMed]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Compact System of Wavelength-Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
[CrossRef]

Ohta, T.

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011).
[CrossRef]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Otis, L. L.

L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000).
[CrossRef] [PubMed]

B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998).
[CrossRef] [PubMed]

Pan, Y.

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998).
[CrossRef] [PubMed]

Park, B. H.

M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
[CrossRef] [PubMed]

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Ribeiro, A. C.

A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
[CrossRef]

Rollins, A. M.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Roth, J. E.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Sakakibara, Y.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt.34(25), 5699–5707 (1995).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seitz, W.

Seno, Y.

Senoo, Y.

Sharma, U.

Sivak, M. V.

G. Isenberg and M. V. Sivak., “Gastrointestinal optical coherence tomography,” Tech. Gastrointest. Endosc.5(2), 94–101 (2003).
[CrossRef]

Skaf, M.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
[CrossRef] [PubMed]

Stroeve, P.

Sumimura, K.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Takayanagi, J.

Tearney, G. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Ueno, T.

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

van Leeuwen, T. G.

Vieira, N. D.

A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
[CrossRef]

Westphal, V.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Wojtkowski, M.

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Yadlowsky, M. J.

Yazdanfar, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Yun, S. H.

Zezell, D. M.

A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
[CrossRef]

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Express (1)

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011).
[CrossRef]

Arch. Ophthalmol. (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Dentomaxillofac. Radiol. (1)

L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Nishizawa and T. Goto, “Compact System of Wavelength-Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
[CrossRef]

J. Appl. Phys. (1)

A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006).
[CrossRef]

J. Biomed. Opt. (3)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Prog. Retin. Eye Res. (1)

R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tech. Gastrointest. Endosc. (1)

G. Isenberg and M. V. Sivak., “Gastrointestinal optical coherence tomography,” Tech. Gastrointest. Endosc.5(2), 94–101 (2003).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (3706 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup of the developed high repetition rate ultrashort pulse fiber laser using SWNT. EDF, Er-doped fiber; WDM, wavelength division multiplexed coupler.

Fig. 2
Fig. 2

Variations of (a) the output power and the operation mode, and (b) spectral and temporal widths as a function of the pump power.

Fig. 3
Fig. 3

Characteristics of the output pulse of the fiber laser, (a) the optical spectrum and (b) the autocorrelation trace.

Fig. 4
Fig. 4

Observed RF spectra for (a) single sideband measurement and (b) 0-1.0 GHz region of the developed high repetition rate fiber laser.

Fig. 5
Fig. 5

Experimental setup of 1.7 μm high power SC source. QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarization beam splitter; PBC, polarization beam combiner; PMF, polarization maintaining fiber; HNLF, highly nonlinear fiber.

Fig. 6
Fig. 6

Optical spectra of (a) the Raman soliton pulse and (b) the high power SC (black line, light source; red one, in front of detector; orange one, in front of detector (enlarged).).

Fig. 7
Fig. 7

Experimental setup of the ultrahigh resolution OCT system operating at 1.7 μm wavelength.

Fig. 8
Fig. 8

(a) Interference signal of the UHR-OCT system with the developed SC source, (b) the logarithmically demodulated signal.

Fig. 9
Fig. 9

(a) Photograph of the human baby tooth sample. The red arrow represents the B-scan line. (b-d) UHR-OCT images measured by (b) the developed SC source, (c) the previous one, and (d) the one at 1.3 μm wavelength region, respectively. The same gray scale was used in these three OCT images. (e-g) Depth profiles averaged over 90 A-line scans, respectively. Important features inside the sample can be distinguished, such as the enamel layer (E), and the dentin layer (D).

Fig. 10
Fig. 10

(a) Photograph of the human nail sample. The red arrow represents the B-scan line. (b-d) UHR-OCT images of the sample with (b) the developed SC source, (c) the previous one, and (d) SC source at 1.3 μm wavelength region. The same gray scale was used in these three OCT images. (e-g) Depth profiles along the red dashed line in Fig. 10(b-d) at the area of epidermis and dermis. (h-j) Depth profiles along the blue dashed line in Fig. 10(b-d) at the area of nail plate and nail bed. Important features inside the sample can be distinguished, such as epidermis (Ep), dermis (D), nail plate (Np), Nail bed (Nb).

Fig. 11
Fig. 11

(a) Photograph of the pig thyroid gland sample. (b-d) UHR-OCT images of the sample with (b) the developed SC source, (c) the previous one, and (d) SC source at 1.3 μm wavelength region. The same gray scale was used in these three OCT images. (e-g) Depth profiles along the red dashed line in Fig. 11(b-d). (F): follicle.

Fig. 12
Fig. 12

(a,b) En-face images of the pig thyroid gland at the same depth of 0.58 mm from the surface measured by (a) the developed SC source and (b) the previous SC source. The same gray scale was used in both images. (c) 3D image of the pig thyroid gland measured by the developed SC source (Media 1).

Tables (1)

Tables Icon

Table 1 Specifications of compared UHR-OCT systems.

Metrics