Abstract

In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
    [CrossRef] [PubMed]
  2. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
    [CrossRef] [PubMed]
  3. F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
    [CrossRef] [PubMed]
  4. R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
    [CrossRef] [PubMed]
  5. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics2(1), 39–43 (2008).
    [CrossRef] [PubMed]
  6. S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
    [CrossRef] [PubMed]
  7. J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
    [CrossRef] [PubMed]
  8. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  9. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009).
    [CrossRef] [PubMed]
  10. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
    [CrossRef] [PubMed]
  11. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
    [CrossRef] [PubMed]
  12. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
    [CrossRef] [PubMed]
  13. S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013).
    [CrossRef] [PubMed]
  14. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
    [CrossRef] [PubMed]
  15. M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
    [CrossRef] [PubMed]
  16. K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
    [CrossRef] [PubMed]
  17. S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
    [CrossRef] [PubMed]
  18. M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
    [CrossRef] [PubMed]
  19. G. Pasterkamp and E. Falk, “Atherosclerotic plaque rupture: an overview,” J. Clin. Basic Cardiol.3, 81–86 (2000).
  20. E. Falk, “Why do plaques rupture?” Circulation86(6Suppl), III30–III42 (1992).
    [PubMed]
  21. K. C. Hilty and D. H. Steinberg, “Vulnerable plaque imaging-current techniques,” J. Cardiovasc. Transl. Res.2(1), 9–18 (2009).
    [CrossRef] [PubMed]
  22. F. Sharif and R. T. Murphy, “Current status of vulnerable plaque detection,” Catheter. Cardiovasc. Interv.75(1), 135–144 (2010).
    [CrossRef] [PubMed]
  23. C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
    [CrossRef] [PubMed]
  24. J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
    [CrossRef] [PubMed]
  25. M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
    [CrossRef] [PubMed]
  26. M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
    [CrossRef] [PubMed]
  27. L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
    [CrossRef] [PubMed]
  28. M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
    [CrossRef] [PubMed]
  29. W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
    [CrossRef] [PubMed]
  30. K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
    [CrossRef] [PubMed]
  31. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004).
    [CrossRef] [PubMed]
  32. K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
    [CrossRef] [PubMed]
  33. M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
    [CrossRef] [PubMed]
  34. J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
    [CrossRef] [PubMed]
  35. M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012).
    [CrossRef] [PubMed]
  36. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
    [CrossRef] [PubMed]
  37. M. W. Urban and J. F. Greenleaf, “A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue,” Phys. Med. Biol.54(19), 5919–5933 (2009).
    [CrossRef] [PubMed]
  38. C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
    [CrossRef] [PubMed]
  39. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  40. S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
    [CrossRef] [PubMed]
  41. H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
    [CrossRef] [PubMed]

2013 (3)

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013).
[CrossRef] [PubMed]

2012 (2)

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012).
[CrossRef] [PubMed]

2011 (3)

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

2010 (4)

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

F. Sharif and R. T. Murphy, “Current status of vulnerable plaque detection,” Catheter. Cardiovasc. Interv.75(1), 135–144 (2010).
[CrossRef] [PubMed]

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

2009 (4)

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
[CrossRef] [PubMed]

M. W. Urban and J. F. Greenleaf, “A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue,” Phys. Med. Biol.54(19), 5919–5933 (2009).
[CrossRef] [PubMed]

K. C. Hilty and D. H. Steinberg, “Vulnerable plaque imaging-current techniques,” J. Cardiovasc. Transl. Res.2(1), 9–18 (2009).
[CrossRef] [PubMed]

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009).
[CrossRef] [PubMed]

2008 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics2(1), 39–43 (2008).
[CrossRef] [PubMed]

2007 (4)

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
[CrossRef] [PubMed]

C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
[CrossRef] [PubMed]

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

2006 (2)

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
[CrossRef] [PubMed]

2002 (4)

M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
[CrossRef] [PubMed]

K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
[CrossRef] [PubMed]

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[CrossRef] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

2000 (2)

G. Pasterkamp and E. Falk, “Atherosclerotic plaque rupture: an overview,” J. Clin. Basic Cardiol.3, 81–86 (2000).

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

1999 (2)

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[CrossRef] [PubMed]

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

1998 (3)

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

1992 (1)

E. Falk, “Why do plaques rupture?” Circulation86(6Suppl), III30–III42 (1992).
[PubMed]

Adler, D. C.

Aglyamov, S.

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013).
[CrossRef] [PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

Alam, S. K.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Allen, J. D.

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
[CrossRef] [PubMed]

Amador, C.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

An, K.-N.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Asmar, R.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Baker, C. R.

K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
[CrossRef] [PubMed]

Benetos, A.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Berbis, J.

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

Bhojwani, R.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
[CrossRef] [PubMed]

Bierca, J.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Boppart, S. A.

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Bouma, B. E.

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Boutouyrie, P.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Bruneval, P.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Callé, S.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Chen, Q.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Chen, S.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Cheng, K. S.

K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
[CrossRef] [PubMed]

Cloutier, G.

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
[CrossRef] [PubMed]

Couade, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Criton, A.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Cunliffe, I.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
[CrossRef] [PubMed]

Dahl, J. J.

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
[CrossRef] [PubMed]

de Boer, J. F.

Ducimetiere, P.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Dumont, D. M.

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
[CrossRef] [PubMed]

Duprez, D.

M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
[CrossRef] [PubMed]

Elkateb Hachemi, M.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Emelianov, S.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013).
[CrossRef] [PubMed]

Emelianov, S. Y.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Emmerich, J.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Falk, E.

G. Pasterkamp and E. Falk, “Atherosclerotic plaque rupture: an overview,” J. Clin. Basic Cardiol.3, 81–86 (2000).

E. Falk, “Why do plaques rupture?” Circulation86(6Suppl), III30–III42 (1992).
[PubMed]

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Fernandez, F. J.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Finet, G.

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

Fink, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Fong, K. L.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Fowlkes, J. B.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Garra, B.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Gautier, I.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Giroux, M. F.

C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
[CrossRef] [PubMed]

Gordon, M. L.

Greenleaf, J. F.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

M. W. Urban and J. F. Greenleaf, “A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue,” Phys. Med. Biol.54(19), 5919–5933 (2009).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Griset, V.

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

Guize, L.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Ham, K. L.

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

Hamilton, G.

K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
[CrossRef] [PubMed]

Hasegawa, H.

H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
[CrossRef] [PubMed]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Henry, J. F.

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

Hilty, K. C.

K. C. Hilty and D. H. Steinberg, “Vulnerable plaque imaging-current techniques,” J. Cardiovasc. Transl. Res.2(1), 9–18 (2009).
[CrossRef] [PubMed]

Hoeks, A. P. G.

K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
[CrossRef] [PubMed]

Huang, Z.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

Huber, R.

Ichiki, M.

H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
[CrossRef] [PubMed]

Il’inskii, Y.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

Insana, M. F.

Jakubowski, W. S.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Kallel, F.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Kanai, H.

H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
[CrossRef] [PubMed]

Karpiouk, A.

Koiwa, Y.

H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
[CrossRef] [PubMed]

Kolios, M. C.

Konofagou, E.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Krouskop, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Laiquzzaman, M.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
[CrossRef] [PubMed]

Laloux, B.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Larin, K. V.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013).
[CrossRef] [PubMed]

Laurent, S.

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

Le Floc’h, S.

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

Li, J.

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013).
[CrossRef] [PubMed]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

Liang, X.

Lo, S.

Luk, T. W. H.

Manapuram, R. K.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

Manns, F.

Mantry, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
[CrossRef] [PubMed]

Mariampillai, A.

Maurice, R. L.

C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
[CrossRef] [PubMed]

McAleavey, S. A.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Menodiado, F. M.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

Messas, E.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Migda, B.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Miller, E. M.

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
[CrossRef] [PubMed]

Mlosek, R. K.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Mok, A.

Murphy, R. T.

F. Sharif and R. T. Murphy, “Current status of vulnerable plaque detection,” Catheter. Cardiovasc. Interv.75(1), 135–144 (2010).
[CrossRef] [PubMed]

Negron, L. A.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Nightingale, K.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Nightingale, K. R.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[CrossRef] [PubMed]

Nightingale, R.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Nightingale, R. W.

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[CrossRef] [PubMed]

O’Rourke, M. F.

M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
[CrossRef] [PubMed]

Ohayon, J.

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

Oliver, C.

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

Ophir, J.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Orescanin, M.

Ostrovsky, L.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Palmeri, M. L.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Pasterkamp, G.

G. Pasterkamp and E. Falk, “Atherosclerotic plaque rupture: an overview,” J. Clin. Basic Cardiol.3, 81–86 (2000).

Pekar, J.

Pernot, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Petit, P.

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

Pettigrew, R. I.

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

Piwowonski, A.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Plante, G. E.

M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
[CrossRef] [PubMed]

Prada, C.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Qi, B.

Razani, M.

Remenieras, J. P.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Rudenko, O.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Rudenko, O. V.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Sarvazyan, A.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Sarvazyan, A. P.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Scarcelli, G.

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics2(1), 39–43 (2008).
[CrossRef] [PubMed]

Schmitt, C.

C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
[CrossRef] [PubMed]

Schmitt, J. M.

Sebag, F.

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

Seifalian, A. M.

K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
[CrossRef] [PubMed]

Seng-Yue, E.

Shah, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
[CrossRef] [PubMed]

Sharif, F.

F. Sharif and R. T. Murphy, “Current status of vulnerable plaque detection,” Catheter. Cardiovasc. Interv.75(1), 135–144 (2010).
[CrossRef] [PubMed]

Sileshi, B.

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

Singh, M.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

Slapa, R. Z.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Slowinska-Srzednicka, J.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Song, S.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

Soo, M. S.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Soulez, G.

C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
[CrossRef] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Staessen, J. A.

M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
[CrossRef] [PubMed]

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Steinberg, D. H.

K. C. Hilty and D. H. Steinberg, “Vulnerable plaque imaging-current techniques,” J. Cardiovasc. Transl. Res.2(1), 9–18 (2009).
[CrossRef] [PubMed]

Stutz, D. L.

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[CrossRef] [PubMed]

Sun, C.

Sutin, A.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Swanson, S. D.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Szopinski, K. T.

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Tanter, M.

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Tezuka, F.

H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
[CrossRef] [PubMed]

Toohey, K. S.

Tracqui, P.

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

Trahey, G.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Trahey, G. E.

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[CrossRef] [PubMed]

Twa, M. D.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

Urban, M. W.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

M. W. Urban and J. F. Greenleaf, “A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue,” Phys. Med. Biol.54(19), 5919–5933 (2009).
[CrossRef] [PubMed]

Vaillant-Lombard, J.

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

Varghese, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Vitkin, I. A.

Vlachopoulos, C.

M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
[CrossRef] [PubMed]

Walker, W. F.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Wang, R. K.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

Wang, S.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013).
[CrossRef] [PubMed]

Wilson, B. C.

Yang, V. X. D.

Yun, S. H.

Am. J. Hypertens. (1)

M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Catheter. Cardiovasc. Interv. (1)

F. Sharif and R. T. Murphy, “Current status of vulnerable plaque detection,” Catheter. Cardiovasc. Interv.75(1), 135–144 (2010).
[CrossRef] [PubMed]

Circulation (2)

E. Falk, “Why do plaques rupture?” Circulation86(6Suppl), III30–III42 (1992).
[PubMed]

H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003).
[CrossRef] [PubMed]

Eur. J. Vasc. Endovasc. Surg. (1)

K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002).
[CrossRef] [PubMed]

Hypertension (1)

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013).
[CrossRef] [PubMed]

J. Cardiovasc. Transl. Res. (1)

K. C. Hilty and D. H. Steinberg, “Vulnerable plaque imaging-current techniques,” J. Cardiovasc. Transl. Res.2(1), 9–18 (2009).
[CrossRef] [PubMed]

J. Clin. Basic Cardiol. (1)

G. Pasterkamp and E. Falk, “Atherosclerotic plaque rupture: an overview,” J. Clin. Basic Cardiol.3, 81–86 (2000).

J. Clin. Endocrinol. Metab. (1)

F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010).
[CrossRef] [PubMed]

J. Thyroid Res. (1)

R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012).
[CrossRef] [PubMed]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995).
[CrossRef] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics2(1), 39–43 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (3)

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

M. W. Urban and J. F. Greenleaf, “A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue,” Phys. Med. Biol.54(19), 5919–5933 (2009).
[CrossRef] [PubMed]

S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010).
[CrossRef] [PubMed]

Proc. Inst. Mech. Eng. H (1)

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Science (1)

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Ultrason. Imaging (2)

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[CrossRef] [PubMed]

Ultrasonics (1)

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (5)

C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007).
[CrossRef] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009).
[CrossRef] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010).
[CrossRef] [PubMed]

Vasc. Med. (1)

J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (860 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A focused transducer was used to produce an ARF impulse to generate shear waves at the focal point of the transducer. The shear wave propagated in the inhomogeneous tissue equivalent phantom consisted of two layers that were labeled as hard (12% concentration) and soft (8% concentration).

Fig. 2
Fig. 2

(a) A focused transducer was used to produce an ARF impulse to generate shear waves at the focal point of the transducer, similar to Fig. 1. (b) The shear wave propagated in this sample consisted of the carotid artery embedded on top of the gelatin.

Fig. 3
Fig. 3

A schematic diagram of the ARF-OCE experimental setup. The setup consisted of the existing SS-OCT system, an inhomogeneous titanium dioxide-gelatin phantom, a carotid artery embedded phantom, a focused pushing transducer (20 MHz, f-number 2.35), an amplifier, a 3D micrometer stage and a function generator (Agilent 33250A 80 MHz, Function / Arbitrary Waveform Generator) synchronized with the SS-OCT system.

Fig. 4
Fig. 4

(a) The B-mode phase map of the phantom was used to measure Δr and Δφ for the calculation of the shear wave speed. The color scale represents the change of the phase value (radians). The two layers (labeled with the arrows) had different gelatin concentrations. (b) Displacement of shear wave in the inhomogeneous phantom. The color bar represents the particle displacement (in μm). (c) B-Mode OCT structural image of the inhomogeneous titanium dioxide – gelatin phantom with a shear modulus map (color scale) superimposed on the B-mode image.

Fig. 5
Fig. 5

A movie of the shear wave propagation (Media 1) for the tissue equivalent phantom which was created by using different phase offsets (time delays) between the Focusing Ultrasound (FUS) and OCT. The X axis and Y axis represent lateral distance(5 mm) and depth(3 mm) respectively. The color scale represent the phase, as in Fig. 4(a) (rad).

Fig. 6
Fig. 6

B-mode OCT structural images (a) and the corresponding B-mode phase map (b) of the carotid artery samples were obtained with the SS-OCT system. The color scale represents the change of the phase value (radians). (c) The displacement of the sample from its initial position was measured.

Fig. 7
Fig. 7

Masson trichrome stain histology image of one of the ex-vivo carotid artery samples.

Fig. 8
Fig. 8

Mean background phase noise (∆φ) at four different SNR regions.

Tables (1)

Tables Icon

Table 1 The mechanical properties of the inhomogeneous phantoms and carotid artery samples (adventitia). The errors for the SW-OCE results represent the standard deviation as explained in the text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 exp(αx).
C S (ω)= ωΔr Δφ .
C S = μ ρ .
Z= λ 0 Δφ 4πn .

Metrics