Abstract

We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Campbell and S. D. Kahl, “Association of dystrophin and an integral membrane glycoprotein,” Nature338(6212), 259–262 (1989).
    [CrossRef] [PubMed]
  2. E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
    [CrossRef] [PubMed]
  3. D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002).
    [PubMed]
  4. J. G. Tidball and M. Wehling-Henricks, “The role of free radicals in the pathophysiology of muscular dystrophy,” J. Appl. Physiol.102(4), 1677–1686 (2006).
    [CrossRef] [PubMed]
  5. G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984).
    [CrossRef] [PubMed]
  6. S. De la Porte, S. Morin, and J. Koenig, “Characteristics of skeletal muscle in mdx mutant mice,” Int. Rev. Cytol.191, 99–148 (1999).
  7. T. A. Partridge, “The mdx mouse model as a surrogate for Duchenne muscular dystrophy,” FEBS J.280(17), 4177–4186 (2013).
    [CrossRef] [PubMed]
  8. B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
    [CrossRef] [PubMed]
  9. A. Franco and J. B. Lansman, “Calcium entry through stretch-inactivated ion channels in mdx myotubes,” Nature344(6267), 670–673 (1990).
    [CrossRef] [PubMed]
  10. M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
    [CrossRef] [PubMed]
  11. P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988).
    [CrossRef] [PubMed]
  12. M. J. Cullen, J. J. Fulthorpe, and J. B. Harris, “The distribution of desmin and titin in normal and dystrophic human muscle,” Acta Neuropathol.83(2), 158–169 (1992).
    [CrossRef] [PubMed]
  13. H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
    [CrossRef] [PubMed]
  14. N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008).
    [CrossRef] [PubMed]
  15. C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
    [CrossRef] [PubMed]
  16. M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008).
    [CrossRef] [PubMed]
  17. R. M. Lovering, L. Michaelson, and C. W. Ward, “Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling,” Am. J. Physiol. Cell Physiol.297(3), C571–C580 (2009).
    [CrossRef] [PubMed]
  18. J. Capote, M. DiFranco, and J. L. Vergara, “Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study,” Am. J. Physiol. Cell Physiol.298(5), C1077–C1086 (2010).
    [CrossRef] [PubMed]
  19. E. Clarkson, C. F. Costa, and L. M. Machesky, “Congenital myopathies: diseases of the actin cytoskeleton,” J. Pathol.204(4), 407–417 (2004).
    [CrossRef] [PubMed]
  20. O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
    [CrossRef] [PubMed]
  21. N. G. Laing and K. J. Nowak, “When contractile proteins go bad: the sarcomere and skeletal muscle disease,” Bioessays27(8), 809–822 (2005).
    [CrossRef] [PubMed]
  22. S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
    [CrossRef] [PubMed]
  23. L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
    [CrossRef] [PubMed]
  24. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  25. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  26. X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
    [CrossRef] [PubMed]
  27. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007).
    [CrossRef] [PubMed]
  28. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
    [CrossRef] [PubMed]
  29. F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
    [CrossRef] [PubMed]
  30. S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
    [CrossRef] [PubMed]
  31. F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J.93(4), 1312–1320 (2007).
    [CrossRef] [PubMed]
  32. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
    [CrossRef] [PubMed]
  33. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express16(20), 16151–16165 (2008).
    [CrossRef] [PubMed]
  34. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
    [CrossRef] [PubMed]
  35. C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt.46(10), 1852–1859 (2007).
    [CrossRef] [PubMed]
  36. G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy,” Opt. Express17(22), 19763–19777 (2009).
    [CrossRef] [PubMed]
  37. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
    [CrossRef] [PubMed]
  38. S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express17(16), 14418–14425 (2009).
    [CrossRef] [PubMed]
  39. M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008).
    [PubMed]
  40. G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011).
    [CrossRef] [PubMed]
  41. S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
    [CrossRef] [PubMed]
  42. D. Rouède, J.-J. Bellanger, G. Recher, and F. Tiaho, “Study of the effect of myofibrillar misalignment on the sarcomeric SHG intensity pattern,” Opt. Express21(9), 11404–11414 (2013).
    [CrossRef] [PubMed]
  43. G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
    [CrossRef] [PubMed]
  44. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
    [CrossRef] [PubMed]
  45. D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013).
    [CrossRef] [PubMed]
  46. D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
    [CrossRef] [PubMed]
  47. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
    [CrossRef] [PubMed]
  48. V. Dubowitz and C. A. Sewry, Muscle Biopsy: A Practical Approach, Third Edition (London, 2007).
  49. B. M. Millman, “The filament lattice of striated muscle,” Physiol. Rev.78(2), 359–391 (1998).
    [PubMed]
  50. D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motil. Cytoskeleton28(1), 1–24 (1994).
    [CrossRef] [PubMed]
  51. J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
    [CrossRef] [PubMed]
  52. J. K. Y. U. Hiroko Yokota, “Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis,” Phys. Res. Int.2012, 12 (2012).
  53. M. Rivard, C.-A. Couture, A. K. Miri, M. Laliberté, A. Bertrand-Grenier, L. Mongeau, and F. Légaré, “Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy,” Biomed. Opt. Express4(10), 2078–2086 (2013).
    [CrossRef] [PubMed]
  54. X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
    [CrossRef] [PubMed]
  55. D. G. Allen, N. P. Whitehead, and E. W. Yeung, “Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes,” J. Physiol.567(3), 723–735 (2005).
    [CrossRef] [PubMed]
  56. L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
    [CrossRef] [PubMed]
  57. F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
    [CrossRef] [PubMed]
  58. K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
    [CrossRef] [PubMed]
  59. A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
    [CrossRef] [PubMed]
  60. S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
    [CrossRef] [PubMed]
  61. Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
    [CrossRef] [PubMed]
  62. Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
    [CrossRef] [PubMed]
  63. R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
    [CrossRef] [PubMed]

2013 (5)

T. A. Partridge, “The mdx mouse model as a surrogate for Duchenne muscular dystrophy,” FEBS J.280(17), 4177–4186 (2013).
[CrossRef] [PubMed]

D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013).
[CrossRef] [PubMed]

S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

D. Rouède, J.-J. Bellanger, G. Recher, and F. Tiaho, “Study of the effect of myofibrillar misalignment on the sarcomeric SHG intensity pattern,” Opt. Express21(9), 11404–11414 (2013).
[CrossRef] [PubMed]

M. Rivard, C.-A. Couture, A. K. Miri, M. Laliberté, A. Bertrand-Grenier, L. Mongeau, and F. Légaré, “Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy,” Biomed. Opt. Express4(10), 2078–2086 (2013).
[CrossRef] [PubMed]

2012 (2)

J. K. Y. U. Hiroko Yokota, “Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis,” Phys. Res. Int.2012, 12 (2012).

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

2011 (5)

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
[CrossRef] [PubMed]

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011).
[CrossRef] [PubMed]

2010 (5)

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

J. Capote, M. DiFranco, and J. L. Vergara, “Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study,” Am. J. Physiol. Cell Physiol.298(5), C1077–C1086 (2010).
[CrossRef] [PubMed]

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

2009 (6)

R. M. Lovering, L. Michaelson, and C. W. Ward, “Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling,” Am. J. Physiol. Cell Physiol.297(3), C571–C580 (2009).
[CrossRef] [PubMed]

J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
[CrossRef] [PubMed]

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express17(16), 14418–14425 (2009).
[CrossRef] [PubMed]

G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy,” Opt. Express17(22), 19763–19777 (2009).
[CrossRef] [PubMed]

2008 (8)

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express16(20), 16151–16165 (2008).
[CrossRef] [PubMed]

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008).
[PubMed]

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008).
[CrossRef] [PubMed]

N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008).
[CrossRef] [PubMed]

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (3)

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

J. G. Tidball and M. Wehling-Henricks, “The role of free radicals in the pathophysiology of muscular dystrophy,” J. Appl. Physiol.102(4), 1677–1686 (2006).
[CrossRef] [PubMed]

2005 (5)

C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
[CrossRef] [PubMed]

N. G. Laing and K. J. Nowak, “When contractile proteins go bad: the sarcomere and skeletal muscle disease,” Bioessays27(8), 809–822 (2005).
[CrossRef] [PubMed]

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

D. G. Allen, N. P. Whitehead, and E. W. Yeung, “Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes,” J. Physiol.567(3), 723–735 (2005).
[CrossRef] [PubMed]

2004 (2)

E. Clarkson, C. F. Costa, and L. M. Machesky, “Congenital myopathies: diseases of the actin cytoskeleton,” J. Pathol.204(4), 407–417 (2004).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

2003 (2)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (2)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002).
[PubMed]

2001 (1)

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
[CrossRef] [PubMed]

1999 (1)

S. De la Porte, S. Morin, and J. Koenig, “Characteristics of skeletal muscle in mdx mutant mice,” Int. Rev. Cytol.191, 99–148 (1999).

1998 (1)

B. M. Millman, “The filament lattice of striated muscle,” Physiol. Rev.78(2), 359–391 (1998).
[PubMed]

1997 (1)

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

1996 (1)

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

1994 (1)

D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motil. Cytoskeleton28(1), 1–24 (1994).
[CrossRef] [PubMed]

1992 (1)

M. J. Cullen, J. J. Fulthorpe, and J. B. Harris, “The distribution of desmin and titin in normal and dystrophic human muscle,” Acta Neuropathol.83(2), 158–169 (1992).
[CrossRef] [PubMed]

1990 (2)

A. Franco and J. B. Lansman, “Calcium entry through stretch-inactivated ion channels in mdx myotubes,” Nature344(6267), 670–673 (1990).
[CrossRef] [PubMed]

L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
[CrossRef] [PubMed]

1989 (1)

K. P. Campbell and S. D. Kahl, “Association of dystrophin and an integral membrane glycoprotein,” Nature338(6212), 259–262 (1989).
[CrossRef] [PubMed]

1988 (2)

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988).
[CrossRef] [PubMed]

1984 (1)

G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984).
[CrossRef] [PubMed]

1965 (1)

H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
[CrossRef] [PubMed]

Adams, D. J.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Agatea, L.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Agbulut, O.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

Albo, J.

L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
[CrossRef] [PubMed]

Alkilani, A.

Allen, D. G.

N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008).
[CrossRef] [PubMed]

D. G. Allen, N. P. Whitehead, and E. W. Yeung, “Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes,” J. Physiol.567(3), 723–735 (2005).
[CrossRef] [PubMed]

Amat-Roldan, I.

Anderson, M. E.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Antolini, R.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Artigas, D.

Babinet, C.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

Balke, C. W.

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

Barretto, R. P. J.

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008).
[PubMed]

Barzda, V.

Belfall, B.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Bellanger, J. J.

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

Bellanger, J.-J.

Bembi, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Bertrand-Grenier, A.

Betto, R.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Biesmans, L.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Binder, H. J.

H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
[CrossRef] [PubMed]

Bito, V.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Blaauw, B.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Blake, D. J.

D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002).
[PubMed]

Blanchard-Desce, M.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
[CrossRef] [PubMed]

Bloch, R. J.

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

Bogaert, J.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Boryskina, O. P.

Both, M.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

Bottinelli, R.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Brandmeier, B.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Brotto, M.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Bulfield, G.

G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984).
[CrossRef] [PubMed]

Bulman, D. E.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Burghes, A. H.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Butler-Browne, G.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

Campagnola, P. J.

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Campbell, K. P.

K. P. Campbell and S. D. Kahl, “Association of dystrophin and an integral membrane glycoprotein,” Nature338(6212), 259–262 (1989).
[CrossRef] [PubMed]

Canato, M.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Canepari, M.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Capitanio, M.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Capote, J.

J. Capote, M. DiFranco, and J. L. Vergara, “Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study,” Am. J. Physiol. Cell Physiol.298(5), C1077–C1086 (2010).
[CrossRef] [PubMed]

M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008).
[CrossRef] [PubMed]

C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
[CrossRef] [PubMed]

Carlsson, L.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

Chamberlain, J. S.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

Charpak, S.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
[CrossRef] [PubMed]

Chen, B.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Chen, X. Y.

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Cheng, H.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Chien, Y. H.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Chu, Y.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Cicchi, R.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Cisek, R.

Clarke, J. D.

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

Clarkson, E.

E. Clarkson, C. F. Costa, and L. M. Machesky, “Congenital myopathies: diseases of the actin cytoskeleton,” J. Pathol.204(4), 407–417 (2004).
[CrossRef] [PubMed]

Claus, P.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Collet, C.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Colucci-Guyon, E.

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

Costa, C. F.

E. Clarkson, C. F. Costa, and L. M. Machesky, “Congenital myopathies: diseases of the actin cytoskeleton,” J. Pathol.204(4), 407–417 (2004).
[CrossRef] [PubMed]

Couture, C.-A.

Cullen, M. J.

M. J. Cullen, J. J. Fulthorpe, and J. B. Harris, “The distribution of desmin and titin in normal and dystrophic human muscle,” Acta Neuropathol.83(2), 158–169 (1992).
[CrossRef] [PubMed]

Czapiga, M.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

D’Amico, L. A.

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
[CrossRef] [PubMed]

D’hooge, J.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Danieli-Betto, D.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Dauser, D.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Davies, K. E.

D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002).
[PubMed]

De la Porte, S.

S. De la Porte, S. Morin, and J. Koenig, “Characteristics of skeletal muscle in mdx mutant mice,” Int. Rev. Cytol.191, 99–148 (1999).

Delp, S. L.

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008).
[PubMed]

Detre, E.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Dibb, K. M.

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

DiFranco, M.

J. Capote, M. DiFranco, and J. L. Vergara, “Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study,” Am. J. Physiol. Cell Physiol.298(5), C1077–C1086 (2010).
[CrossRef] [PubMed]

M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008).
[CrossRef] [PubMed]

C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
[CrossRef] [PubMed]

Dougherty, R. P.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Du, A. P.

J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
[CrossRef] [PubMed]

Dyar, K. A.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Dymarkowski, S.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Edström, L.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
[CrossRef] [PubMed]

Ehler, E.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Eisner, D. A.

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

Finch, S. C.

H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
[CrossRef] [PubMed]

Fink, R. H.

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

Fink, R. H. A.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

Fleury, V.

Franco, A.

A. Franco and J. B. Lansman, “Calcium entry through stretch-inactivated ion channels in mdx myotubes,” Nature344(6267), 670–673 (1990).
[CrossRef] [PubMed]

Franzen, G.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Friedrich, O.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

Fulthorpe, J. J.

M. J. Cullen, J. J. Fulthorpe, and J. B. Harris, “The distribution of desmin and titin in normal and dystrophic human muscle,” Acta Neuropathol.83(2), 158–169 (1992).
[CrossRef] [PubMed]

Fusi, L.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

Garbe, C.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

Garcia, E.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Gautel, M.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Gervasio, O. L.

N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008).
[CrossRef] [PubMed]

Gorelik, J.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Graham, H. K.

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

Green, C.

Greenhalgh, C.

Grounds, M. D.

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Guilbert, T.

Gunnarsson, L. G.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Guo, A.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Hackman, P.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Harding, S. E.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Harris, J. B.

M. J. Cullen, J. J. Fulthorpe, and J. B. Harris, “The distribution of desmin and titin in normal and dystrophic human muscle,” Acta Neuropathol.83(2), 158–169 (1992).
[CrossRef] [PubMed]

Hedberg, B.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Heinzel, F. R.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Herting, D. C.

H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
[CrossRef] [PubMed]

Hirata, Y.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Hiroko Yokota, J. K. Y. U.

J. K. Y. U. Hiroko Yokota, “Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis,” Phys. Res. Int.2012, 12 (2012).

Hodges, R. S.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Holloway, B.

J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
[CrossRef] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Horn, M. A.

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

Hughes, S. M.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Hurst, V.

H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
[CrossRef] [PubMed]

Hwu, W. L.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Joseph, C.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Kahl, S. D.

K. P. Campbell and S. D. Kahl, “Association of dystrophin and an integral membrane glycoprotein,” Nature338(6212), 259–262 (1989).
[CrossRef] [PubMed]

Kanda, G. K.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Karpati, G.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Kenny, A. M.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Klamut, H. J.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Klyen, B. R.

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Koenig, J.

S. De la Porte, S. Morin, and J. Koenig, “Characteristics of skeletal muscle in mdx mutant mice,” Int. Rev. Cytol.191, 99–148 (1999).

Korchev, Y. E.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Kristensen, J.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Kuchel, G. A.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Künsting, T.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

Kutschke, W.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Lab, M. J.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Laing, N. G.

N. G. Laing and K. J. Nowak, “When contractile proteins go bad: the sarcomere and skeletal muscle disease,” Bioessays27(8), 809–822 (2005).
[CrossRef] [PubMed]

Laliberté, M.

Landin, S.

L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
[CrossRef] [PubMed]

Lange, S.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Lansman, J. B.

A. Franco and J. B. Lansman, “Calcium entry through stretch-inactivated ion channels in mdx myotubes,” Nature344(6267), 670–673 (1990).
[CrossRef] [PubMed]

Launikonis, B. S.

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

Lavault, M. T.

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

Le Grand, Y.

Lederer, W. J.

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

Légaré, F.

Li, Z.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

Linari, M.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Llewellyn, M. E.

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008).
[PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Lombardi, V.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Lovering, R. M.

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

R. M. Lovering, L. Michaelson, and C. W. Ward, “Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling,” Am. J. Physiol. Cell Physiol.297(3), C571–C580 (2009).
[CrossRef] [PubMed]

Loza-Alvarez, P.

S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express17(16), 14418–14425 (2009).
[CrossRef] [PubMed]

Lyon, A. R.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Ma, J.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Machesky, L. M.

E. Clarkson, C. F. Costa, and L. M. Machesky, “Congenital myopathies: diseases of the actin cytoskeleton,” J. Pathol.204(4), 407–417 (2004).
[CrossRef] [PubMed]

MacLeod, K. T.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Maes, F.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Maffei, M.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Major, A.

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Marchand, S.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Martinac, B.

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

Mathew, M.

S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

McCulle, S.

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

Mericskay, M.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

Mertz, J.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
[CrossRef] [PubMed]

Michaelson, L.

R. M. Lovering, L. Michaelson, and C. W. Ward, “Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling,” Am. J. Physiol. Cell Physiol.297(3), C571–C580 (2009).
[CrossRef] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Millman, B. M.

B. M. Millman, “The filament lattice of striated muscle,” Physiol. Rev.78(2), 359–391 (1998).
[PubMed]

Miri, A. K.

Mohler, W. A.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Mongeau, L.

Moore, K. J.

G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984).
[CrossRef] [PubMed]

Moreaux, L.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
[CrossRef] [PubMed]

Morin, S.

S. De la Porte, S. Morin, and J. Koenig, “Characteristics of skeletal muscle in mdx mutant mice,” Int. Rev. Cytol.191, 99–148 (1999).

Muriel, J. M.

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

Nadiarynkh, O.

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Newey, S. E.

D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002).
[PubMed]

Novo, D.

C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
[CrossRef] [PubMed]

Nowak, K. J.

N. G. Laing and K. J. Nowak, “When contractile proteins go bad: the sarcomere and skeletal muscle disease,” Bioessays27(8), 809–822 (2005).
[CrossRef] [PubMed]

Nucciotti, V.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

O’Neill, A.

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

Odin, C.

Olarte, O. E.

S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

Olsen, B. R.

F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J.93(4), 1312–1320 (2007).
[CrossRef] [PubMed]

Pan, Z.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Partridge, T. A.

T. A. Partridge, “The mdx mouse model as a surrogate for Duchenne muscular dystrophy,” FEBS J.280(17), 4177–4186 (2013).
[CrossRef] [PubMed]

Paulin, D.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

Pavone, F. S.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Petegnief, V.

Pfeffer, C.

F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J.93(4), 1312–1320 (2007).
[CrossRef] [PubMed]

Pham, C.

N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008).
[CrossRef] [PubMed]

Piazzesi, G.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Pilbeam, C. C.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Pinçon-Raymond, M.

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

Piroddi, N.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Pittis, M. G.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Planas, A. M.

Plotnikov, S.

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Plotz, P.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Poggesi, C.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Pournin, S.

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

Prent, N.

Prosser, B. L.

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

Psilodimitrakopoulos, S.

S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express17(16), 14418–14425 (2009).
[CrossRef] [PubMed]

Quarta, M.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Raben, N.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Rademakers, F.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Radley-Crabb, H. G.

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Ralston, E.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Ray, P. N.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Recher, G.

D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013).
[CrossRef] [PubMed]

D. Rouède, J.-J. Bellanger, G. Recher, and F. Tiaho, “Study of the effect of myofibrillar misalignment on the sarcomeric SHG intensity pattern,” Opt. Express21(9), 11404–11414 (2013).
[CrossRef] [PubMed]

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011).
[CrossRef] [PubMed]

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy,” Opt. Express17(22), 19763–19777 (2009).
[CrossRef] [PubMed]

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007).
[CrossRef] [PubMed]

Regen, C. M.

P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988).
[CrossRef] [PubMed]

Reggiani, C.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Rhee, D.

D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motil. Cytoskeleton28(1), 1–24 (1994).
[CrossRef] [PubMed]

Richard, I.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Richard, P.

Richards, M. A.

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

Rivard, M.

Rostkova, E.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Rouède, D.

D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013).
[CrossRef] [PubMed]

D. Rouède, J.-J. Bellanger, G. Recher, and F. Tiaho, “Study of the effect of myofibrillar misalignment on the sarcomeric SHG intensity pattern,” Opt. Express21(9), 11404–11414 (2013).
[CrossRef] [PubMed]

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011).
[CrossRef] [PubMed]

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy,” Opt. Express17(22), 19763–19777 (2009).
[CrossRef] [PubMed]

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007).
[CrossRef] [PubMed]

Sacconi, L.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Sampson, D. D.

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Samuelsson, M.

L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
[CrossRef] [PubMed]

Sandre, O.

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
[CrossRef] [PubMed]

Sanger, J. M.

J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
[CrossRef] [PubMed]

D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motil. Cytoskeleton28(1), 1–24 (1994).
[CrossRef] [PubMed]

Sanger, J. W.

J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
[CrossRef] [PubMed]

D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motil. Cytoskeleton28(1), 1–24 (1994).
[CrossRef] [PubMed]

Santos, S. I.

S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

Schaub, E.

D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013).
[CrossRef] [PubMed]

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011).
[CrossRef] [PubMed]

Schiaffino, S.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Schnitzer, M. J.

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008).
[PubMed]

Schürmann, S.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

Schwartz, O.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Scranton, V. L.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Sejersen, T.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Shavlakadze, T.

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Siller, W. G.

G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984).
[CrossRef] [PubMed]

Simon, A.

Sipido, K.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Sobie, E. A.

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

Song, L. S.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

Soria, G.

Spiro, H. M.

H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
[CrossRef] [PubMed]

Steinhardt, R. A.

P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988).
[CrossRef] [PubMed]

Stewart, B.

Stringari, C.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Strong, J.

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

Swaim, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

Talbot, J.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Tascon, C.

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
[CrossRef] [PubMed]

Teichmann, M. D.

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

Teichmann, M. D. H.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Tesi, C.

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Thornell, L. E.

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
[CrossRef] [PubMed]

Tiaho, F.

D. Rouède, J.-J. Bellanger, G. Recher, and F. Tiaho, “Study of the effect of myofibrillar misalignment on the sarcomeric SHG intensity pattern,” Opt. Express21(9), 11404–11414 (2013).
[CrossRef] [PubMed]

D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013).
[CrossRef] [PubMed]

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011).
[CrossRef] [PubMed]

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy,” Opt. Express17(22), 19763–19777 (2009).
[CrossRef] [PubMed]

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007).
[CrossRef] [PubMed]

Tidball, J. G.

J. G. Tidball and M. Wehling-Henricks, “The role of free radicals in the pathophysiology of muscular dystrophy,” J. Appl. Physiol.102(4), 1677–1686 (2006).
[CrossRef] [PubMed]

Toniolo, L.

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

Trafford, A. W.

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

Turner, P. R.

P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988).
[CrossRef] [PubMed]

Udd, B.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Uttenweiler, D.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

Vanzi, F.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

Vergara, J. L.

J. Capote, M. DiFranco, and J. L. Vergara, “Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study,” Am. J. Physiol. Cell Physiol.298(5), C1077–C1086 (2010).
[CrossRef] [PubMed]

M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008).
[CrossRef] [PubMed]

C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
[CrossRef] [PubMed]

Vihola, A.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Vogel, M.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

von Wegner, F.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

Walsh, S. J.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Wang, J. S.

J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
[CrossRef] [PubMed]

Wang, X.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Ward, C. W.

R. M. Lovering, L. Michaelson, and C. W. Ward, “Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling,” Am. J. Physiol. Cell Physiol.297(3), C571–C580 (2009).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Weber, C.

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

Wegner, F. V.

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

Wehling-Henricks, M.

J. G. Tidball and M. Wehling-Henricks, “The role of free radicals in the pathophysiology of muscular dystrophy,” J. Appl. Physiol.102(4), 1677–1686 (2006).
[CrossRef] [PubMed]

Wei, S.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Weir, A.

D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002).
[PubMed]

Weisleder, N.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Weiss, R. M.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Westwood, T.

P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988).
[CrossRef] [PubMed]

Whitehead, N. P.

N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008).
[CrossRef] [PubMed]

D. G. Allen, N. P. Whitehead, and E. W. Yeung, “Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes,” J. Physiol.567(3), 723–735 (2005).
[CrossRef] [PubMed]

Wight, P. A.

G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Woods, C. E.

M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008).
[CrossRef] [PubMed]

C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
[CrossRef] [PubMed]

Worton, R. G.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Wu, M.

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

Xiang, F.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Xie, Y. P.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Xu, M.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Yakovenko, A.

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Yeung, E. W.

D. G. Allen, N. P. Whitehead, and E. W. Yeung, “Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes,” J. Physiol.567(3), 723–735 (2005).
[CrossRef] [PubMed]

Zhang, Y.

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

Zhao, X.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Zhou, J.

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Zimmerman, K.

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Zubrowski, B.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

Zubrzycka-Gaarn, E. E.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Acta Neuropathol. (1)

M. J. Cullen, J. J. Fulthorpe, and J. B. Harris, “The distribution of desmin and titin in normal and dystrophic human muscle,” Acta Neuropathol.83(2), 158–169 (1992).
[CrossRef] [PubMed]

Am. J. Physiol. Cell Physiol. (3)

R. M. Lovering, L. Michaelson, and C. W. Ward, “Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling,” Am. J. Physiol. Cell Physiol.297(3), C571–C580 (2009).
[CrossRef] [PubMed]

J. Capote, M. DiFranco, and J. L. Vergara, “Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study,” Am. J. Physiol. Cell Physiol.298(5), C1077–C1086 (2010).
[CrossRef] [PubMed]

R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bioessays (1)

N. G. Laing and K. J. Nowak, “When contractile proteins go bad: the sarcomere and skeletal muscle disease,” Bioessays27(8), 809–822 (2005).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (6)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010).
[CrossRef] [PubMed]

F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J.93(4), 1312–1320 (2007).
[CrossRef] [PubMed]

L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001).
[CrossRef] [PubMed]

D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013).
[CrossRef] [PubMed]

D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011).
[CrossRef] [PubMed]

Cell Motil. Cytoskeleton (2)

D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motil. Cytoskeleton28(1), 1–24 (1994).
[CrossRef] [PubMed]

J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009).
[CrossRef] [PubMed]

Circ Heart Fail (1)

K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009).
[CrossRef] [PubMed]

Circ. Res. (2)

F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008).
[CrossRef] [PubMed]

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010).
[CrossRef] [PubMed]

Dev. Biol. (1)

Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996).
[CrossRef] [PubMed]

FEBS J. (1)

T. A. Partridge, “The mdx mouse model as a surrogate for Duchenne muscular dystrophy,” FEBS J.280(17), 4177–4186 (2013).
[CrossRef] [PubMed]

Int. Rev. Cytol. (1)

S. De la Porte, S. Morin, and J. Koenig, “Characteristics of skeletal muscle in mdx mutant mice,” Int. Rev. Cytol.191, 99–148 (1999).

J. Appl. Physiol. (2)

B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010).
[CrossRef] [PubMed]

J. G. Tidball and M. Wehling-Henricks, “The role of free radicals in the pathophysiology of muscular dystrophy,” J. Appl. Physiol.102(4), 1677–1686 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008).
[CrossRef] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004).
[CrossRef] [PubMed]

J. Cell Biol. (1)

Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997).
[CrossRef] [PubMed]

J. Microsc. (1)

G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011).
[CrossRef] [PubMed]

J. Muscle Res. Cell Motil. (1)

F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006).
[CrossRef] [PubMed]

J. Neurol. Sci. (1)

L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990).
[CrossRef] [PubMed]

J. Pathol. (1)

E. Clarkson, C. F. Costa, and L. M. Machesky, “Congenital myopathies: diseases of the actin cytoskeleton,” J. Pathol.204(4), 407–417 (2004).
[CrossRef] [PubMed]

J. Physiol. (3)

N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008).
[CrossRef] [PubMed]

C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005).
[CrossRef] [PubMed]

D. G. Allen, N. P. Whitehead, and E. W. Yeung, “Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes,” J. Physiol.567(3), 723–735 (2005).
[CrossRef] [PubMed]

J. Struct. Biol. (1)

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008).
[CrossRef] [PubMed]

N. Engl. J. Med. (1)

H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Cell Biol. (1)

X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005).
[CrossRef] [PubMed]

Nat. Protoc. (1)

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Nature (5)

P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988).
[CrossRef] [PubMed]

K. P. Campbell and S. D. Kahl, “Association of dystrophin and an integral membrane glycoprotein,” Nature338(6212), 259–262 (1989).
[CrossRef] [PubMed]

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

A. Franco and J. B. Lansman, “Calcium entry through stretch-inactivated ion channels in mdx myotubes,” Nature344(6267), 670–673 (1990).
[CrossRef] [PubMed]

M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008).
[PubMed]

Opt. Express (5)

Phys. Res. Int. (1)

J. K. Y. U. Hiroko Yokota, “Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis,” Phys. Res. Int.2012, 12 (2012).

Physiol. Rev. (2)

B. M. Millman, “The filament lattice of striated muscle,” Physiol. Rev.78(2), 359–391 (1998).
[PubMed]

D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002).
[PubMed]

PLoS ONE (2)

M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008).
[CrossRef] [PubMed]

S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (5)

A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009).
[CrossRef] [PubMed]

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010).
[CrossRef] [PubMed]

L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006).
[CrossRef] [PubMed]

G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984).
[CrossRef] [PubMed]

M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008).
[CrossRef] [PubMed]

Science (1)

S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005).
[CrossRef] [PubMed]

Other (1)

V. Dubowitz and C. A. Sewry, Muscle Biopsy: A Practical Approach, Third Edition (London, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical XY sections illustrating duplex SHG (a,c) and TPEF α-actinin (b,d) images from control BL10 gastrocnemius (a,b) and mdx gastrocnemius (c,d) mouse muscles. Note that in both TPEF and SHG images, necrotic fibers (asterisks) lacked the canonical sarcomeric banding pattern of preserved fibers (arrows). Whereas these regions of necrosis are the brightest in TPEF images due to non-specific accumulation of secondary fluorescently labeled antibodies, the opposite is observed for SHG images due to proteolysis and degradation of myosin filaments. Note also for SHG images the bright filaments (arrowheads) reminiscent of collagen fibrils surrounding necrotic fibers. Scale bar = 20 μm.

Fig. 2
Fig. 2

Typical duplex SHG (a), TPEF (c) and merge image (c) inside preserved myofiber of mdx mouse gastrocnemius muscle. Note that for the merge image, SHG and TPEF signals are respectively in red and green color. Note also that in (a, b and c) white arrowheads and empty or filled white arrows all indicate 2f sarcomeric TPEF-IPs spatially correlated to 2f sarcomeric SHG-IPs whereas yellow filled arrows indicate 1f sarcomeric TPEF-IPs spatially correlated to 2f sarcomeric SHG-IPs. (d,e) Pixel grey level intensity profile of SHG (full lines) and TPEF (dotted lines) signals along indicated lines in images (a), (b) and (c). Scale bar = 5 μm.

Fig. 3
Fig. 3

3D orthogonal views of SHG and TPEF-RS19 images of mdx mouse gastrocnemius muscle. (a, d), (b, e) and (c, f) are respectively SHG, TPEF and merge of XY and XZ views. Note that for the merge, red and green colors are respectively for SHG and TPEF signals. Note that arrowheads indicate 2f sarcomeric TPEF-IPs spatially correlated to 2f sarcomeric SHG-IPs. (g) and (h) are YZ views of respectively SHG and TPEF images. Arrows indicate resolved tubular system in YZ view of TPEF-RS19 image. Scale bar = 5 μm.

Fig. 4
Fig. 4

Experimental SHG image and SHG-AIPs of mdx mouse gastrocnemius muscle. (a) Typical SHG image. (b) SHG-AIP of corresponding ROIs shown in (a). Note that each thumbnail in (b) is labeled by a number localizing the ROI in (a). Full angular width of SHG-AIP for each thumbnail in (b) is 66° in both horizontal and vertical directions. Each SHG-AIP is obtained for 7 × 7 positions of the pinhole with angular width of 10°. Scale bar = 3 μm.

Fig. 5
Fig. 5

(a) Histogram representing mean percentage of 2f sarcomeric SHG-IP in random fields of control BL10 fibers (BL10-rdm), random fields of preserved mdx fibers (mdx-rdm), near regions of necrosis inside preserved mdx fibers (mdx-prox) and distal regions of necrosis inside mdx preserved fibers (mdx-dist). Note that asterisk indicates p-value of statistical student t-test (*** p<0.001, ** p<0.01, number of fields n is 70<n<100) (b) Representative EM image of control healthy BL10 gastrocnemius muscle. (c) Enlarge view of ROI indicated in (b) showing tightly joined myofibrils and well-aligned sarcomeres. Z-line and M-band are indicated. Arrowheads and asterisks indicate respectively mitochondria and triads. (d) Representative TEM image of mdx muscle tissue. Adjacent sarcomeres misaligned by half a sarcomere size are indicated by arrowheads. Note the absence of sarcomeric striation of a necrotic fiber at the bottom of the preserved fiber. (e) Magnified TEM image of ROI indicated in (d) showing 6 typical sarcomeres of 3 myofibrils. Note that myofibrils are misaligned and that triads are barely visible. Scale bar = 2 μm.

Fig. 6
Fig. 6

Macroscopic and microscopic diagrams illustrating different myofibrillar organization and their corresponding theoretical SHG (myosin, red color) and TPEF (immunodetection of Z-line α-actinin, green color) intensity patterns for a sarcomere size of L = 2 μm. For all simulations, overall thickness of the myofibrillar bundle is z = 6 μm and laser beam that is propagating along z direction, is focused at z = 0 at the middle of the bundle. For the calculation, each bundle was decomposed in individual myofibrils of rectangular size 1μm × 1μm in y and z directions (see theoretical simulation). For all microscopic schematic views, A-bands consist of well-ordered thick filaments that are represented by a double color code (magenta and blue) to account for polarity inversion at the M-band (grey color) and immunodetection of Z-line α-actinin is shown in green color. A schematic view of the sarcomere is shown in inset (lower right corner). (aI) Macroscopic schematic diagram of two bundles with parallel XZ planes misaligned in x direction at y = 0. Microscopic schematic diagrams (left) and their corresponding theoretical SHG and TPEF intensity patterns (right) of aligned (aII), misaligned by L/4 (aIII) and misaligned by L/2 (aIV) A-bands. Note that for misalignment of L/2 SHG-IP has a Y-shape. Note also that in addition to the intra sarcomeric A-band polarity inversion (in x direction), inter A-band polarity inversion (in y direction) between adjacent myofibrils occurs at y = 0 due to myofibrillar misalignement. (bI) Macroscopic schematic diagram of two bundles with parallel XY planes misaligned in x direction at z = 0. Microscopic schematic diagrams (left) and their corresponding theoretical SHG and TPEF intensity patterns (right) of misaligned A-bands. Values of misalignement are L/4 (bII), L/3 (bIII) and L/2 (bIV). (cI) Macroscopic schematic diagram representing two bundles with respectively U-shape (1) and rectangular shape (2) misaligned by L/2 at z = 0. Microscopic schematic diagrams at z<0 (cII) and z>0 (cIII) and the corresponding theoretical SHG and TPEF intensity patterns at z = 0, z = −1 and z = 1 as indicated. Note that misalignement induces appearance of additional polarity inversion of adjacent hemi A-bands along z direction at y = 0. Note that for all three z positions, SHG-IPs have rectangular-shape. (dI) Macroscopic schematic diagram representing four bundles with rectangular shape. Bundles 1 and 2 are well aligned and bundles 3 and 4 are misaligned from bundles 1 and 2 by L/4 and in opposite direction. Microscopic schematic diagram at z<0 (dII) and z>0 (dIII) and the corresponding theoretical SHG and TPEF intensity patterns at z = 0 as indicated. Note the L/4 shift of 2f sarcomeric SHG- and TPEF-IPs when compared to (c). Note that SHG-IP has a vernier-shape. (eI) Macroscopic schematic diagram of two L-shape bundles misaligned by L/2. Microscopic schematic diagram at z<0 (eII) and z>0 (eIII) and the corresponding theoretical SHG and TPEF intensity patterns at z = 0 as indicated. Note that SHG-IP has a staircase-shape. (fI) Macroscopic schematic diagram of three misaligned bundles with respectively L-shape (1) and rectangular shape (2, 3). Bundles 1, 2 and 1, 3 are misaligned by respectively L/4 and L/2. Microscopic schematic diagram at z<0 (eII) and z>0 (eIII) and the corresponding theoretical SHG and TPEF intensity patterns at z = 0 as indicated. Note that SHG-IP has a U-shape. Scales of the microscopic diagrams and of the theoretical simulations are in μm.

Fig. 7
Fig. 7

Theoretical simulation of SHG and TPEF signals of different cases of myofibrillar arrangement. (a-d) are respectively well registered A-bands (a), misaligned A-bands by L/2 (b), well registered A-bands with misaligned thick filaments (c) and mini sarcomeres (d). (a,b) L = 2 μm, A = 1.6 μm and m = 150 nm. (c) L = 2 μm, A = 1.6 μm, m = 320 nm. (d) L = 1 μm, A = 0.8 μm, m = 150 nm). (I-V) are respectively schematic diagrams, SHG-IPs, TPEF-IPs, Intensity profiles at z = 0 and SHG-AIPs. Note that (I-IV) are XZ views whereas (V) is a XY view. Color codes for (I-III) are identical to those of Fig. 6 and color code of (IV) is red and green for respectively SHG and TPEF intensity profiles. For (V), SHG-AIPs are in arbitrary units with increasing intensity from blue to red. Full angular widths of SHG-AIPs are 66° in both x and y directions. Note the scale in μm for I-IV.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I 2ω (θ,φ)=  | e i ( k x 2ω x+ k y 2ω y+ k z 2ω z ) M(x,y,z) e 2 x 2 + y 2 w xy 2 2 z 2 w z 2 +2iξ k z ω z dxdydz | 2
I 2ω (θ,φ)=  | f ( e i k x 2ω x M x f (x) e 2 x 2 w xy 2 dx e i k y 2ω y M y f (y) e 2 y 2 w xy 2 dy e i k z 2ω z M z f (x) e 2 z 2 w z 2 +2iξ k z ω z dz ) | 2
I 2ω (r)=u | f ( n c xn f e 1 8 w xy 2   ( k x 2ω 2πn L x 1 ) 2 n c yn f e 1 8 w xy 2   ( k y 2ω 2πn L y 1 ) 2 n c zn f e 1 8 w z 2 ( k z 2ω 2ξ k z ω 2πn L z 1 ) 2 ) | 2 ,
| c xn f = 2i πn sin( 1 2 πn L x 1 (Am) )×sin( 1 2 πn L x 1 (A+m) )×exp(2iπn L x 1 Δ x f ),n =0,n=0 c ηn f = 1 πn sin(πn L η 1 η )×exp(2iπn L η 1 Δ η f ),n ,η=y,z = η L η 1 ,n=0,η=y,z .
I TPEF (x,y,z)= e 4( x 0 2 + y 0 2 w xy 2 + z 0 2 w z 2 ) C( x 0 x, y 0 y, z 0 z)d x 0 d y 0 d z 0 .
I TPEF (x,y,z)= f ( e 4 x 0 2 w xy 2 C x f ( x 0 x)d x 0 e 4 y 0 2 w xy 2 C y f ( y 0 y)d y 0 e 4 z 0 2 w z 2 C z f ( z 0 z)d z 0 ) ,
I TPEF (x,y,z)=v f ( n d xn f e 1 4 w xy 2 π 2 n 2 L x 2 n d yn f e 1 4 w xy 2 π 2 n 2 L y 2 n d zn f e 1 4 w z 2 π 2 n 2 L z 2 ) ,
| d ηn f = 1 πn sin(πn L η 1 η )×exp(2iπn L η 1 Δ η f ),n ,(η=x,y,z) = η L η 1 ,n=0,(η=x,y,z) .

Metrics