Abstract

Volume regulation under osmotic loading is one of the most fundamental functions in cells and organelles. However, the effective method to detect volume changes of a single organelle has not been developed. Here, we present a novel technique for detecting volume changes of a single isolated mitochondrion in aqueous solution based on the transmittance of the light through the mitochondrion. We found that 70% and 21% of mitochondria swelled upon addition of a hypotonic solution and Ca2+, respectively. These results show the potential of the present technique to detect the physiological volume changes of individual small organelles such as mitochondria.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
    [CrossRef] [PubMed]
  2. X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
    [CrossRef] [PubMed]
  3. S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
    [CrossRef] [PubMed]
  4. J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
    [CrossRef] [PubMed]
  5. P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
    [PubMed]
  6. P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
    [CrossRef] [PubMed]
  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Apoptosis” in Molecular Biology of THE CELL V ed., (Garland Science, New York, 2008).
  8. K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
    [PubMed]
  9. N. Zamzami, C. Maisse, D. Métivier, and G. Kroemer, “Measurement of Membrane Permeability and Permeability Transition of Mitochondria,” in: L.A. Pon, E.A. Schon (Eds.), Methods in Cell Biol. 65, 147–158 (2001)
  10. V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
    [CrossRef]
  11. M. M. Chakrabarty, Chemistry and Technology of Oils and Fats (Allied Publishers, 2009), Chap.11.
  12. S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
    [CrossRef] [PubMed]
  13. R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
    [CrossRef] [PubMed]
  14. T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
    [CrossRef] [PubMed]
  15. Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
    [CrossRef] [PubMed]
  16. K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
    [PubMed]
  17. D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
    [CrossRef] [PubMed]
  18. G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
    [CrossRef] [PubMed]

2012

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

2011

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

2006

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

2005

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

2002

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

2001

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

1999

P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
[PubMed]

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

1998

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

1990

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

1989

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

1985

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

1979

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Akimova, O. A.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Anishkin, A.

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Ball, V.

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

Beavis, A. D.

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

Bernardi, P.

P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
[PubMed]

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Boer, M.

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Bremer, E.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Broekemeier, K. M.

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

Chae, S. J.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Chen, L.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Colonna, R.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Csonka, L. N.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Dempsey, M. E.

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

Di Lisa, F.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Garlid, K. D.

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

Grygorczyk, R.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Ha, S. J.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Hattori, T.

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Haworth, R. A.

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Hultman, E.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Hunter, D. R.

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Jeong, J. H.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Kim, W.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Koltsova, S. V.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Kotelevtsev, S. V.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Kraemer, R.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Lee, G. J.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Lee, S. R.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Lundin, A.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Luo, H.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Mao, J.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Mitaku, S.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Morikawa, D.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

Nakayama, S.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Nie, S.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Ohta, Y.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Orlov, S. N.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Pak, Y. K.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Park, H. K.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Petronilli, V.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Pfeiffer, D. R.

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

Poolman, B.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Ramsden, J. J.

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

Sakuyama, T.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Scorrano, L.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Smith, L. T.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Sukharev, S.

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Sun, X.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Uechi, Y.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

van der Heide, T.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Wang, L.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Watanabe, K.

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Wibom, R.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Wood, J. M.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Yoshioka, H.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Zhu, L.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Arch. Biochem. Biophys.

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Biochemistry

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Biophys. J.

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Biopolymers

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

Can. J. Physiol. Pharmacol.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Comp. Biochem. Physiol. A Mol. Integr. Physiol.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Eur. J. Biochem.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

J. Biol. Chem.

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

J. Membr. Biol.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Micron

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Physiol. Rev.

P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
[PubMed]

Scand. J. Clin. Lab. Invest.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Other

M. M. Chakrabarty, Chemistry and Technology of Oils and Fats (Allied Publishers, 2009), Chap.11.

N. Zamzami, C. Maisse, D. Métivier, and G. Kroemer, “Measurement of Membrane Permeability and Permeability Transition of Mitochondria,” in: L.A. Pon, E.A. Schon (Eds.), Methods in Cell Biol. 65, 147–158 (2001)

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Apoptosis” in Molecular Biology of THE CELL V ed., (Garland Science, New York, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Image acquisition for analysis of transmitted light. Mitochondria on a coverslip were illuminated using a light from a 100-W halogen lamp. Transmitted light images of individual mitochondria were acquired by changing the positions of the objective lens along the optical axis (z-axis). The details are described in the text.

Fig. 2
Fig. 2

Trace of the light passing through a mitochondrion. A) Reflection and refraction of the light. Circles drawn in a solid line and a broken line shows mitochondria before and after swelling, respectively. Bold lines indicate the incident light. Solid lines indicate the reflection by or transmitted light through mitochondria before swelling. Broken lines indicate the reflection by or transmitted light through swelled mitochondria. B) The trace of the light near the focus. Solid and broken lines indicate the light after passing through a mitochondrion before and after swelling, respectively.

Fig. 3
Fig. 3

Analysis of transmittance. A) An image of a single mitochondrion and a square region (30 × 30 pixels) to be analyzed. This region encompassing a single mitochondrion was scanned with a small region (3 × 3 pixels). Average intensities within the small regions were calculated. Bar, 1 μm. B) Obtained stack consisting of the 20xy planes. A square shown in a dotted line demonstrates the region in which the average intensity was at the minimum

Fig. 4
Fig. 4

Effects of the z-position of the objective lens on a transmitted light image of a mitochondrion. A) Transmitted light images of a mitochondrion at different z-positions of the objective lens. We set z = 0 at an appropriate position. Bar, 1 μm. B) Dependence of Rplane on the z-position. Rplanes of 3 different mitochondria (a, b, c) in the same microscopic field are shown. Definition of Rplane is written in “Methods” section

Fig. 5
Fig. 5

Time-course of changes in transmittance (T) at a mitochondrion. Hypotonic solution was added to mitochondria at t = 5 min. A) Sequential images of a single mitochondrion before and after addition of hypotonic solution. Time interval between each image was 2 min. Each image was obtained in the plane where Rplane showed the local minimum value. Bar, 1 μm. B) Time-course of changes in T at the single mitochondrion. Definitions of Rplane and T are written in “Methods” and “Results” section, respectively

Fig. 6
Fig. 6

Distributions of ΔTs. A) Distributions of ΔTs upon addition of the hypotonic or isotonic solution. B) The percentage of mitochondria for which ΔTs are larger than ΔTth that is indicated on the horizontal axis (PΔTth)). C) Difference between PΔTth) upon addition of the hypotonic solution and PΔTth) upon addition of isotonic solution (closed circles). Open circles indicate PΔTth) upon addition of the isotonic solution. Definitions of ΔT, ΔTth, and PΔTth) are described in the “Results” section.

Fig. 7
Fig. 7

Dependence of PΔ(0.02) upon addition of hypotonic solution on Tinit. All mitochondria images recognized as single mitochondria were analyzed. A) The distributions of Tinits. Mitochondria with ΔT > 0.02 and mitochondria with ΔT < 0.02 are indicated separately. B) P0.02(Tinit,th) and the percentage of mitochondria with Tinits < Tinit,th indicated in the horizontal axis. Definitions of ΔT, PΔTth), Tinit, Tinit,th, and P0.02(Tinit,th) are described in the “Results” section.

Fig. 8
Fig. 8

Scatter diagram of ΔT and calcein fluorescence. Closed circles, mitochondria to which hypotonic buffer was added; open circles, mitochondria to which isotonic buffer was added.

Fig. 9
Fig. 9

Swelling of mitochondria with Tinit < 0.87. A) Distributions of ΔTs upon addition of the hypotonic and isotonic solutions. B) Percentages of swollen mitochondria P0.02 (0.87). Values represent the mean ± SEM (n >4). *, P < 0.05.

Metrics