Abstract

Volume regulation under osmotic loading is one of the most fundamental functions in cells and organelles. However, the effective method to detect volume changes of a single organelle has not been developed. Here, we present a novel technique for detecting volume changes of a single isolated mitochondrion in aqueous solution based on the transmittance of the light through the mitochondrion. We found that 70% and 21% of mitochondria swelled upon addition of a hypotonic solution and Ca2+, respectively. These results show the potential of the present technique to detect the physiological volume changes of individual small organelles such as mitochondria.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
    [CrossRef] [PubMed]
  2. X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
    [CrossRef] [PubMed]
  3. S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
    [CrossRef] [PubMed]
  4. J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
    [CrossRef] [PubMed]
  5. P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
    [PubMed]
  6. P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
    [CrossRef] [PubMed]
  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Apoptosis” in Molecular Biology of THE CELL V ed., (Garland Science, New York, 2008).
  8. K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
    [PubMed]
  9. N. Zamzami, C. Maisse, D. Métivier, and G. Kroemer, “Measurement of Membrane Permeability and Permeability Transition of Mitochondria,” in: L.A. Pon, E.A. Schon (Eds.), Methods in Cell Biol. 65, 147–158 (2001)
  10. V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
    [CrossRef]
  11. M. M. Chakrabarty, Chemistry and Technology of Oils and Fats (Allied Publishers, 2009), Chap.11.
  12. S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
    [CrossRef] [PubMed]
  13. R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
    [CrossRef] [PubMed]
  14. T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
    [CrossRef] [PubMed]
  15. Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
    [CrossRef] [PubMed]
  16. K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
    [PubMed]
  17. D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
    [CrossRef] [PubMed]
  18. G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
    [CrossRef] [PubMed]

2012 (2)

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

2011 (2)

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

2006 (1)

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

2002 (1)

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

2001 (1)

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

1999 (2)

P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
[PubMed]

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

1998 (1)

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

1990 (1)

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

1989 (1)

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

1985 (1)

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

1979 (1)

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Akimova, O. A.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Anishkin, A.

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Ball, V.

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

Beavis, A. D.

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

Bernardi, P.

P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
[PubMed]

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Boer, M.

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Bremer, E.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Broekemeier, K. M.

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

Chae, S. J.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Chen, L.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Colonna, R.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Csonka, L. N.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Dempsey, M. E.

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

Di Lisa, F.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Garlid, K. D.

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

Grygorczyk, R.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Ha, S. J.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Hattori, T.

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Haworth, R. A.

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Hultman, E.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Hunter, D. R.

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Jeong, J. H.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Kim, W.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Koltsova, S. V.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Kotelevtsev, S. V.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Kraemer, R.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Lee, G. J.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Lee, S. R.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Lundin, A.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Luo, H.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Mao, J.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Mitaku, S.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Morikawa, D.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

Nakayama, S.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Nie, S.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Ohta, Y.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Orlov, S. N.

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Pak, Y. K.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Park, H. K.

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Petronilli, V.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Pfeiffer, D. R.

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

Poolman, B.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Ramsden, J. J.

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

Sakuyama, T.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Scorrano, L.

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

Smith, L. T.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Sukharev, S.

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Sun, X.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Uechi, Y.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

van der Heide, T.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Wang, L.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Watanabe, K.

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Wibom, R.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Wood, J. M.

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Yoshioka, H.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Zhu, L.

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Arch. Biochem. Biophys. (1)

D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (2)

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006).
[CrossRef] [PubMed]

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002).
[CrossRef] [PubMed]

Biochemistry (1)

M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011).
[CrossRef] [PubMed]

Biophys. J. (1)

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005).
[CrossRef] [PubMed]

Biopolymers (1)

V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998).
[CrossRef]

Can. J. Physiol. Pharmacol. (1)

S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012).
[CrossRef] [PubMed]

Comp. Biochem. Physiol. A Mol. Integr. Physiol. (1)

J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001).
[CrossRef] [PubMed]

Eur. J. Biochem. (1)

P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999).
[CrossRef] [PubMed]

J. Biol. Chem. (2)

K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985).
[PubMed]

K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989).
[PubMed]

J. Membr. Biol. (1)

X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012).
[CrossRef] [PubMed]

Micron (1)

G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011).
[CrossRef] [PubMed]

Physiol. Rev. (1)

P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999).
[PubMed]

Scand. J. Clin. Lab. Invest. (1)

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990).
[CrossRef] [PubMed]

Other (3)

M. M. Chakrabarty, Chemistry and Technology of Oils and Fats (Allied Publishers, 2009), Chap.11.

N. Zamzami, C. Maisse, D. Métivier, and G. Kroemer, “Measurement of Membrane Permeability and Permeability Transition of Mitochondria,” in: L.A. Pon, E.A. Schon (Eds.), Methods in Cell Biol. 65, 147–158 (2001)

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Apoptosis” in Molecular Biology of THE CELL V ed., (Garland Science, New York, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics