Abstract

Light-tissue interactions during photoacoustic imaging, including dynamic heat transfer processes in and around vascular structures, are not well established. A three-dimensional, transient, optical-thermal computational model was used to simulate energy deposition, temperature distributions and thermal damage in breast tissue during exposure to pulsed laser trains at 800 and 1064 nm. Rapid and repetitive temperature increases and thermal relaxation led to superpositioning effects that were highly dependent on vessel diameter and depth. For a ten second exposure at established safety limits, the maximum single-pulse and total temperature rise levels were 0.2°C and 5.8°C, respectively. No significant thermal damage was predicted. The impact of tissue optical properties, surface boundary condition and irradiation wavelength on peak temperature location and temperature evolution with time are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
    [CrossRef]
  2. S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
    [CrossRef]
  3. Z. Wang, S. Ha, and K. Kim, “Evaluation of finite element based simulation model of photoacoustics in biological tissues,” Proc. SPIE8320, 83201L (2012).
    [CrossRef]
  4. S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008).
    [CrossRef] [PubMed]
  5. M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
    [CrossRef]
  6. F. Fanjul-Vélez and J. L. Arce-Diego, “Modeling thermotherapy in vocal cords novel laser endoscopic treatment,” Lasers Med. Sci.23(2), 169–177 (2008).
    [CrossRef] [PubMed]
  7. T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000).
    [CrossRef] [PubMed]
  8. M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med.45(1), 8–14 (2013).
    [CrossRef] [PubMed]
  9. K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
    [CrossRef]
  10. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt.45(8), 1866–1875 (2006).
    [CrossRef] [PubMed]
  11. J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005).
    [CrossRef] [PubMed]
  12. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt.46(2), 262–272 (2007).
    [CrossRef] [PubMed]
  13. B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010).
    [CrossRef] [PubMed]
  14. S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
    [CrossRef]
  15. M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
    [CrossRef] [PubMed]
  16. Z. Zhao and R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE4707, 153–157 (2002).
    [CrossRef]
  17. Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt.48(17), 3204–3211 (2009).
    [CrossRef] [PubMed]
  18. G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
    [PubMed]
  19. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
    [CrossRef] [PubMed]
  20. I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvasc. Res.78(1), 4–13 (2009).
    [CrossRef] [PubMed]
  21. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
    [CrossRef] [PubMed]
  22. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
    [CrossRef] [PubMed]
  23. J. M. Schmitt, “Optical Measurement of blood oxygenation by implantable telemetry,” (1986).
  24. S. Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html2013 .
  25. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
    [CrossRef] [PubMed]
  26. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
    [PubMed]
  27. J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995).
    [CrossRef]
  28. ANSI Z136.1 – 2007: American National Standard for Safe Use of Lasers,” (American National Standard Institute, 2007).
  29. “International Standard Safety of Laser Products CEI IEC 60825-1,” (International Electrotechnical Comission, 2007).
  30. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
    [CrossRef] [PubMed]
  31. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009).
    [CrossRef] [PubMed]
  32. S. Vaithilingam, T. Ma, Y. Furukawa, A. Zerda, O. Oralkan, A. Kamaya, S. Keren, S. Gambhir, R. B. Jeffrey, and B. T. Khuri-Yakub, “P6A-4 A Co-Axial Scanning Acoustic and Photoacoustic Microscope,” IEEE Ultrasonics Symposium, pp. 2413–2416 (2007).
  33. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express13(1), 89–95 (2005).
    [CrossRef] [PubMed]
  34. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
    [CrossRef] [PubMed]
  35. F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
    [CrossRef] [PubMed]
  36. A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
    [CrossRef]
  37. X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
    [CrossRef] [PubMed]
  38. J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
    [CrossRef] [PubMed]
  39. A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
    [CrossRef]
  40. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
    [CrossRef] [PubMed]
  41. G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004).
    [CrossRef] [PubMed]
  42. G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
    [CrossRef] [PubMed]
  43. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
    [CrossRef]
  44. G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express3(1), 16–25 (2012).
    [CrossRef] [PubMed]
  45. S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
    [CrossRef]
  46. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
    [CrossRef] [PubMed]
  47. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
    [CrossRef] [PubMed]
  48. J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010).
    [CrossRef] [PubMed]
  49. A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express18(19), 19592–19602 (2010).
    [CrossRef] [PubMed]
  50. J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt.42(16), 3215–3224 (2003).
    [CrossRef] [PubMed]
  51. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express1(1), 278–284 (2010).
    [CrossRef] [PubMed]
  52. T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
    [CrossRef] [PubMed]
  53. T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
    [CrossRef] [PubMed]
  54. J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol.54(13), 4225–4241 (2009).
    [CrossRef] [PubMed]
  55. H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol.1(2), 93–122 (1948).
    [PubMed]
  56. A. R. Moritz and F. C. Henriques, “Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns,” Am. J. Pathol.23(5), 695–720 (1947).
    [PubMed]
  57. S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008).
    [CrossRef] [PubMed]
  58. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Network (Academic Press, London, 1990).
  59. F. C. Henriques., “Studies of Thermal Injury; The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury,” Arch. Pathol. (Chic)43(5), 489–502 (1947).
    [PubMed]
  60. B. Nemati, A. Dunn, A. J. Welch, and H. G. Rylander, “Optical model for light distribution during transscleral cyclophotocoagulation,” Appl. Opt.37(4), 764–771 (1998).
    [CrossRef] [PubMed]
  61. J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
    [CrossRef] [PubMed]
  62. D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
    [CrossRef] [PubMed]

2013

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med.45(1), 8–14 (2013).
[CrossRef] [PubMed]

2012

Z. Wang, S. Ha, and K. Kim, “Evaluation of finite element based simulation model of photoacoustics in biological tissues,” Proc. SPIE8320, 83201L (2012).
[CrossRef]

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express3(1), 16–25 (2012).
[CrossRef] [PubMed]

2010

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010).
[CrossRef] [PubMed]

A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express18(19), 19592–19602 (2010).
[CrossRef] [PubMed]

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express1(1), 278–284 (2010).
[CrossRef] [PubMed]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
[CrossRef]

B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010).
[CrossRef] [PubMed]

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

2009

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt.48(17), 3204–3211 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvasc. Res.78(1), 4–13 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009).
[CrossRef] [PubMed]

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol.54(13), 4225–4241 (2009).
[CrossRef] [PubMed]

2008

S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008).
[CrossRef] [PubMed]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008).
[CrossRef] [PubMed]

M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
[CrossRef]

F. Fanjul-Vélez and J. L. Arce-Diego, “Modeling thermotherapy in vocal cords novel laser endoscopic treatment,” Lasers Med. Sci.23(2), 169–177 (2008).
[CrossRef] [PubMed]

2007

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt.46(2), 262–272 (2007).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

2006

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt.45(8), 1866–1875 (2006).
[CrossRef] [PubMed]

2005

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005).
[CrossRef] [PubMed]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express13(1), 89–95 (2005).
[CrossRef] [PubMed]

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

2004

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

2003

2002

Z. Zhao and R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE4707, 153–157 (2002).
[CrossRef]

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

2001

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

2000

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000).
[CrossRef] [PubMed]

1999

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

1998

B. Nemati, A. Dunn, A. J. Welch, and H. G. Rylander, “Optical model for light distribution during transscleral cyclophotocoagulation,” Appl. Opt.37(4), 764–771 (1998).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

1997

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
[CrossRef] [PubMed]

1995

J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995).
[CrossRef]

1948

H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol.1(2), 93–122 (1948).
[PubMed]

1947

A. R. Moritz and F. C. Henriques, “Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns,” Am. J. Pathol.23(5), 695–720 (1947).
[PubMed]

F. C. Henriques., “Studies of Thermal Injury; The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury,” Arch. Pathol. (Chic)43(5), 489–502 (1947).
[PubMed]

Agarwal, A.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Aguirre, A.

B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010).
[CrossRef] [PubMed]

Ambrose, M.

Amirian, J. H.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Andersson-Engels, S.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Andreev, V. G.

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Arce-Diego, J. L.

F. Fanjul-Vélez and J. L. Arce-Diego, “Modeling thermotherapy in vocal cords novel laser endoscopic treatment,” Lasers Med. Sci.23(2), 169–177 (2008).
[CrossRef] [PubMed]

Arridge, S. R.

Ashkenazi, S.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Barton, J. K.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

Bassi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005).
[CrossRef] [PubMed]

Beard, P. C.

Bell, B. A.

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Blouin, A.

Brecht, H. P.

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

Brecht, H.-P.

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Cannata, J. M.

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Chan, K. F.

T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000).
[CrossRef] [PubMed]

Chen, W. R.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

Chen, Y. C.

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Chikoidze, E.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Choi, B.

Conjusteau, A.

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Cox, B. T.

Cubeddu, R.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

D’Andrea, C.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

Day, K. C.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Day, M.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

de Mul, F. F. M.

Del Rio, S. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Delpy, D.

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005).
[CrossRef] [PubMed]

Doyle, R. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Dunn, A.

Elwell, C.

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005).
[CrossRef] [PubMed]

Emelianov, S.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010).
[CrossRef] [PubMed]

Emelianov, S. Y.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Ermilov, S. A.

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Erpelding, T. N.

Esenaliev, R. O.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Fanjul-Vélez, F.

F. Fanjul-Vélez and J. L. Arce-Diego, “Modeling thermotherapy in vocal cords novel laser endoscopic treatment,” Lasers Med. Sci.23(2), 169–177 (2008).
[CrossRef] [PubMed]

Fornage, B. D.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

Fredriksson, I.

I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvasc. Res.78(1), 4–13 (2009).
[CrossRef] [PubMed]

Fronheiser, M.

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Fronheiser, M. P.

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

Fry, E. S.

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

Gatalica, Z.

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Guo, Z.

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol.54(13), 4225–4241 (2009).
[CrossRef] [PubMed]

M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
[CrossRef]

Ha, S.

Z. Wang, S. Ha, and K. Kim, “Evaluation of finite element based simulation model of photoacoustics in biological tissues,” Proc. SPIE8320, 83201L (2012).
[CrossRef]

Hammer, D. X.

T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000).
[CrossRef] [PubMed]

Hansen, M. K.

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
[CrossRef] [PubMed]

Hazle, J.

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

Henrichs, P. M.

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Henriques, F. C.

A. R. Moritz and F. C. Henriques, “Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns,” Am. J. Pathol.23(5), 695–720 (1947).
[PubMed]

F. C. Henriques., “Studies of Thermal Injury; The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury,” Arch. Pathol. (Chic)43(5), 489–502 (1947).
[PubMed]

Herzog, E.

Huang, Q.

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

Huang, S. W.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Hunt, K. K.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

Izatt, J. A.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

Jankovic, L.

Jaunich, M.

M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
[CrossRef]

Jeon, M.

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Jiao, J.

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol.54(13), 4225–4241 (2009).
[CrossRef] [PubMed]

Jin, X.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Kang, H. W.

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

Karabutov, A. A.

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt.46(2), 262–272 (2007).
[CrossRef] [PubMed]

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Karpiouk, A.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010).
[CrossRef] [PubMed]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Khokhlova, T. D.

Kim, C.

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express1(1), 278–284 (2010).
[CrossRef] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009).
[CrossRef] [PubMed]

Kim, H. H.

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Kim, J.

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

Kim, K.

Z. Wang, S. Ha, and K. Kim, “Evaluation of finite element based simulation model of photoacoustics in biological tissues,” Proc. SPIE8320, 83201L (2012).
[CrossRef]

M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
[CrossRef]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Kolkman, R. G. M.

Kolzer, J.

J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Kong, F.

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Koo, J.

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

Köstli, K. P.

Kotov, N.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Kozhushko, V. V.

Kruger, R. A.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Ku, G.

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

Kumavor, P. D.

B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010).
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Lam, R. B.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Lao, Y.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

Larin, K. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Larina, I. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Larson, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Larsson, M.

I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvasc. Res.78(1), 4–13 (2009).
[CrossRef] [PubMed]

Laufer, J.

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005).
[CrossRef] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Li, C.

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Lloyd, H. O.

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Majaron, B.

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med.45(1), 8–14 (2013).
[CrossRef] [PubMed]

Manohar, S. G.

D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
[CrossRef]

Maslov, K.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

Mehta, K.

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Milanic, M.

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med.45(1), 8–14 (2013).
[CrossRef] [PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Milner, T. E.

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
[CrossRef] [PubMed]

Mitic, G.

J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Mitra, K.

M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
[CrossRef]

Monchalin, J.-P.

Mordon, S. R.

S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008).
[CrossRef] [PubMed]

Moritz, A. R.

A. R. Moritz and F. C. Henriques, “Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns,” Am. J. Pathol.23(5), 695–720 (1947).
[PubMed]

Motamedi, M.

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Myllyla, R. A.

Z. Zhao and R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE4707, 153–157 (2002).
[CrossRef]

Nadvoretsky, V.

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

Nelson, J. S.

J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt.42(16), 3215–3224 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
[CrossRef] [PubMed]

Nemati, B.

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Ntziachristos, V.

ODonnell, M.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Oh, J.

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

Oh, Y.

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

Oraevksy, A. A.

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

Oraevsky, A.

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Oraevsky, A. A.

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Otto, J.

J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Otto, P.

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Pashley, M. D.

Pelivanov, I. M.

Pennes, H. H.

H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol.1(2), 93–122 (1948).
[PubMed]

Pfefer, T. J.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Pifferi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

Piras, D.

D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
[CrossRef]

Raje, S.

M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
[CrossRef]

Razansky, D.

Reinecke, D. R.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Reynaud, J. P.

S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008).
[CrossRef] [PubMed]

Rollins, A.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

Rousseau, G.

Rylander, H. G.

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Savateeva, E.

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Optical Measurement of blood oxygenation by implantable telemetry,” (1986).

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Shung, K. K.

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Silverman, R. H.

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Siphanto, R. I.

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Smithies, D. J.

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
[CrossRef] [PubMed]

Sokolov, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Solomatin, S. V.

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Solomatin, V. S.

Song, K. H.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009).
[CrossRef] [PubMed]

Song, S.

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

Spanier, J.

Steenbergen, W.

D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
[CrossRef]

R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express13(1), 89–95 (2005).
[CrossRef] [PubMed]

Stoica, G.

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

Strömberg, T.

I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvasc. Res.78(1), 4–13 (2009).
[CrossRef] [PubMed]

Su, J.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010).
[CrossRef] [PubMed]

Su, R.

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Swartling, J.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Taroni, P.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

Taruttis, A.

Tavakoli, B.

B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010).
[CrossRef] [PubMed]

Thumma, K. K.

Torricelli, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

van Adrichem, L. N. A.

van Gemert, M. J.

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
[CrossRef] [PubMed]

van Gemert, M. J. C.

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

van Leeuwen, T.

D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
[CrossRef]

van Leeuwen, T. G.

van Neck, J. W.

Viator, J. A.

Wang, B.

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010).
[CrossRef] [PubMed]

Wang, L. V.

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express1(1), 278–284 (2010).
[CrossRef] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009).
[CrossRef] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt.48(17), 3204–3211 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

Wang, X. D.

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, S. Ha, and K. Kim, “Evaluation of finite element based simulation model of photoacoustics in biological tissues,” Proc. SPIE8320, 83201L (2012).
[CrossRef]

Wassmer, B.

S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008).
[CrossRef] [PubMed]

Welch, A. J.

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

B. Nemati, A. Dunn, A. J. Welch, and H. G. Rylander, “Optical model for light distribution during transscleral cyclophotocoagulation,” Appl. Opt.37(4), 764–771 (1998).
[CrossRef] [PubMed]

Westphal, V.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

Xia, W.

D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
[CrossRef]

Xiang, L.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

Xie, Z.

Xing, D.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

Xu, M. H.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

Xu, Y.

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

Yang, D.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

Yang, S.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Yaseen, M. A.

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Yazdanfar, S.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

Yokoo, S.

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

Zemmouri, J.

S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008).
[CrossRef] [PubMed]

Zeng, L.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

Zhang, H. F.

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt.48(17), 3204–3211 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

Zhao, Z.

Z. Zhao and R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE4707, 153–157 (2002).
[CrossRef]

Zharinov, A. N.

Zhou, M.

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

Zhu, Q.

B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010).
[CrossRef] [PubMed]

Zinth, W.

J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995).
[CrossRef]

ACS Nano

G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012).
[CrossRef] [PubMed]

Am. J. Pathol.

A. R. Moritz and F. C. Henriques, “Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns,” Am. J. Pathol.23(5), 695–720 (1947).
[PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007).
[CrossRef]

F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009).
[CrossRef] [PubMed]

Arch. Pathol. (Chic)

F. C. Henriques., “Studies of Thermal Injury; The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury,” Arch. Pathol. (Chic)43(5), 489–502 (1947).
[PubMed]

Biomed. Eng. Online

S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express

Eur. J. Radiol.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007).
[CrossRef] [PubMed]

Int. J. Heat Mass Transfer

M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008).
[CrossRef]

Inverse Probl.

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

J. Appl. Phys.

A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

J. Appl. Physiol.

H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol.1(2), 93–122 (1948).
[PubMed]

J. Biomed. Opt.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010).
[CrossRef] [PubMed]

M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Lasers Med. Sci.

F. Fanjul-Vélez and J. L. Arce-Diego, “Modeling thermotherapy in vocal cords novel laser endoscopic treatment,” Lasers Med. Sci.23(2), 169–177 (2008).
[CrossRef] [PubMed]

Lasers Surg. Med.

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med.45(1), 8–14 (2013).
[CrossRef] [PubMed]

T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999).
[CrossRef] [PubMed]

T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000).
[CrossRef] [PubMed]

Med. Phys.

X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002).
[CrossRef] [PubMed]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Microvasc. Res.

I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvasc. Res.78(1), 4–13 (2009).
[CrossRef] [PubMed]

Neoplasia

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000).
[CrossRef] [PubMed]

Opt. Express

Photochem. Photobiol.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000).
[PubMed]

Phys. Med. Biol.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005).
[CrossRef] [PubMed]

T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000).
[CrossRef] [PubMed]

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol.54(13), 4225–4241 (2009).
[CrossRef] [PubMed]

J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012).
[CrossRef] [PubMed]

G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004).
[CrossRef] [PubMed]

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001).
[CrossRef] [PubMed]

D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997).
[CrossRef] [PubMed]

Proc. SPIE

S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010).
[CrossRef]

Z. Wang, S. Ha, and K. Kim, “Evaluation of finite element based simulation model of photoacoustics in biological tissues,” Proc. SPIE8320, 83201L (2012).
[CrossRef]

Z. Zhao and R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE4707, 153–157 (2002).
[CrossRef]

S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009).
[CrossRef]

A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002).
[CrossRef]

J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Technol. Cancer Res. Treat.

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005).
[PubMed]

Ultrasound Med. Biol.

S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008).
[CrossRef] [PubMed]

Other

ANSI Z136.1 – 2007: American National Standard for Safe Use of Lasers,” (American National Standard Institute, 2007).

“International Standard Safety of Laser Products CEI IEC 60825-1,” (International Electrotechnical Comission, 2007).

J. M. Schmitt, “Optical Measurement of blood oxygenation by implantable telemetry,” (1986).

S. Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html2013 .

S. Vaithilingam, T. Ma, Y. Furukawa, A. Zerda, O. Oralkan, A. Kamaya, S. Keren, S. Gambhir, R. B. Jeffrey, and B. T. Khuri-Yakub, “P6A-4 A Co-Axial Scanning Acoustic and Photoacoustic Microscope,” IEEE Ultrasonics Symposium, pp. 2413–2416 (2007).

F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Network (Academic Press, London, 1990).

Supplementary Material (14)

» Media 1: MP4 (525 KB)     
» Media 2: MP4 (280 KB)     
» Media 3: MP4 (407 KB)     
» Media 4: MP4 (229 KB)     
» Media 5: MP4 (1520 KB)     
» Media 6: MP4 (1192 KB)     
» Media 7: MP4 (1628 KB)     
» Media 8: MP4 (1273 KB)     
» Media 9: MP4 (245 KB)     
» Media 10: MP4 (254 KB)     
» Media 11: MP4 (241 KB)     
» Media 12: MP4 (244 KB)     
» Media 13: MP4 (236 KB)     
» Media 14: MP4 (242 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

OPs of a) epidermis, b) dermis, c) breast tissue, and d) blood for a wavelength range of 700 nm to 1100 nm. Values for µa, µs’, and µs are plotted.

Fig. 2
Fig. 2

Per-pulse (radiant exposure-based, left) and pulse train (irradiance-based, right) ANSI/IEC MPEs for a 5-10 ns pulse along with values cited by and used in prior studies [12, 18, 28, 29, 3151]. Irradiance-based values are plotted based on two major exposure duration ranges relevant to PAI, which are listed in the ANSI MPE limits table.

Fig. 3
Fig. 3

MC and thermal code processes including inputs (in white), outputs (in gray), and parts of the algorithm (in black).

Fig. 4
Fig. 4

MC model structure including vessel and incident laser beam.

Fig. 5
Fig. 5

Energy deposition per pulse plots for various blood vessel diameters and depths, including diameters of a.) 0.05 cm, b.) 0.1 cm, c.) 0.2 cm and d.) 0.5 cm at depths of 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 cm at 1064 nm.

Fig. 6
Fig. 6

Energy deposition per pulse distributions (y-z cross sections) at ANSI MPE limits for 1064 nm irradiation. Graphs show two different vessel diameters of 0.05 cm (a, c, and e) and 0.2 cm (b, d, and f) at depths of 0.1 (a and b), 0.2 cm (c and d), and 0.4 cm (e and f).

Fig. 7
Fig. 7

Temperature with depth for first five pulses delivered to tissue for the 1064 nm perfusion case. Data shown for two different vessel diameters of 0.05 cm (a and b) and 0.2 cm (c and d) at two different depths of 0.1 cm (a and c) and 0.4 cm (b and d). Plots correspond to Media 1 through 4: Media 1 corresponds to plot a, Media 2 corresponds to plot b, Media 3 corresponds to plot c, and Media 4 corresponds to plot d.

Fig. 8
Fig. 8

Temperature as a function of depth at various pulses leading up to laser shut-off (10 seconds, 100 pulses) at ANSI MPE limits under perfusion conditions at 1064 nm. Data shown for two different vessel diameters of 0.05 cm (a and b) and 0.2 cm (c and d) at two different depths of 0.1 cm (a and c) and 0.4 cm (b and d). Plots correspond to Media 5 through 8: Media 5 corresponds to plot a, Media 6 corresponds to plot b, Media 7 corresponds to plot c, and Media 8 corresponds plot d.

Fig. 9
Fig. 9

Temperature distributions at termination of the 10 second pulse train at ANSI/IEC MPE limits for an irradiation wavelength of 800 nm. Profiles through the center of the tissue for vessel depths of 0.1, 0.2, 0.4, and 1.0 cm. Vessel diameters include a.) 0.05 cm, b.) 0.2 cm and c.) 0.5 cm.

Fig. 10
Fig. 10

Temperature distributions at termination of the 10 second pulse train at ANSI/IEC MPE limits for an irradiation wavelength of 1064 nm. Profiles through the center of the tissue for vessel depths of 0.1, 0.2, 0.4, and 1.0 cm. Vessel diameters include a.) 0.05 cm, b.) 0.2 cm and c.) 0.5 cm.

Fig. 11
Fig. 11

X-z cross-sections of temperature distributions at the center of the beam at laser shut-off (1064 nm). Graphs show vessel diameters of 0.05 cm (a, c, and e) and 0.2 cm (b, d, and f) at depths of 0.1 (a and b), 0.2 (c and d) and 0.4 cm (e and f). Colorbar on the right-hand side of each graph shows temperature-based color range. Plots correspond to Media 9 through 14: Media 9 corresponds to plot a, Media 10 corresponds to plot b, Media 11 corresponds to plot c, Media 12 corresponds to plot d, Media 13 corresponds to plot e, and Media 14 corresponds to plot f.

Fig. 12
Fig. 12

Transient temperature distributions for a.) 0.05 cm and b.) 0.2 cm blood vessel cases at a variety of depths (0.1, 0.2, 0.4 and 1.0 cm) at 1064 nm. Temperature at the tissue surface and maximum temperature in the vessel are shown. Insets highlight results for the 0.1 and 0.2 cm deep vessels during the initial 0.5 s of exposure.

Tables (4)

Tables Icon

Table 1 OPs implemented in MC simulations

Tables Icon

Table 2 ANSI standard MPEs for skin exposure to a 1-100 nanosecond pulsed laser [28]

Tables Icon

Table 3 Thermal properties used in simulations

Tables Icon

Table 4 Irradiation parameters for simulations at 800 and 1064 nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρc T t =k( 2 T x 2 + 2 T y 2 + 2 T z 2 )+ ω b c b ρ b ( T a T)+S
Ω(t)=A 0 t e E a / RT(τ )dτ

Metrics