Abstract

Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  2. A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).
  3. J. Lakovich, Principles of Fluorescence Spectroscopy (Plenum, 1986).
  4. S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
    [CrossRef] [PubMed]
  5. E. Abbe, “Beiträge zur theorie des Mikroskops und der mikro-skopischer Wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
    [CrossRef]
  6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  7. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007).
    [CrossRef] [PubMed]
  8. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  9. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  10. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
    [CrossRef] [PubMed]
  11. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  12. T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009).
    [CrossRef] [PubMed]
  13. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  14. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
    [CrossRef] [PubMed]
  15. S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010).
    [CrossRef] [PubMed]
  16. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
    [CrossRef] [PubMed]
  17. D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
    [CrossRef] [PubMed]
  18. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
    [CrossRef] [PubMed]
  19. M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B20(3), 554–559 (2003).
    [CrossRef]
  20. S. Stallinga and B. Rieger, “Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model,” Opt. Express20(6), 5896–5921 (2012).
    [CrossRef] [PubMed]
  21. E. A. Mukamel and M. J. Schnitzer, “Unified resolution bounds for conventional and stochastic localization fluorescence microscopy,” Phys. Rev. Lett.109(16), 168102 (2012).
    [CrossRef] [PubMed]
  22. E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
    [CrossRef]
  23. http://laser.cheng.cam.ac.uk/wiki/index.php/Resources
  24. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
    [CrossRef] [PubMed]
  25. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
    [CrossRef] [PubMed]
  26. H. Lodish, D. Baltimore, A. Berk, S. L. Zipurssky, P. Matsudaira, and J. Darnell, Molecular Cell Biology (Freeman, 1995).
  27. L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
    [CrossRef] [PubMed]
  28. E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013).
    [CrossRef]
  29. G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
    [CrossRef] [PubMed]
  30. S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
    [CrossRef] [PubMed]
  31. S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
    [CrossRef] [PubMed]
  32. S. Stallinga and B. Rieger, “Accuracy of the Gaussian point spread function model in 2D localization microscopy,” Opt. Express18(24), 24461–24476 (2010).
    [CrossRef] [PubMed]
  33. http://www.andor.com/scientific-cameras/ixon-emccd-camera-series
  34. http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html
  35. http://titan.physx.u-szeged.hu/~adoptim/
  36. M. Erdelyi, E. J. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express21(9), 10978–10988 (2013).
    [CrossRef] [PubMed]
  37. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2(5), 1377–1393 (2011).
    [CrossRef] [PubMed]
  38. D. J. Metcalf, R. Edwards, N. Kumarswami, and A. E. Knight, “Test samples for optimizing STORM super-resolution microscopy,” J. Vis. Exp.79, 50579 (2013), doi:.
    [CrossRef] [PubMed]
  39. P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
    [CrossRef] [PubMed]

2013 (3)

E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013).
[CrossRef]

D. J. Metcalf, R. Edwards, N. Kumarswami, and A. E. Knight, “Test samples for optimizing STORM super-resolution microscopy,” J. Vis. Exp.79, 50579 (2013), doi:.
[CrossRef] [PubMed]

M. Erdelyi, E. J. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express21(9), 10978–10988 (2013).
[CrossRef] [PubMed]

2012 (5)

S. Stallinga and B. Rieger, “Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model,” Opt. Express20(6), 5896–5921 (2012).
[CrossRef] [PubMed]

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

E. A. Mukamel and M. J. Schnitzer, “Unified resolution bounds for conventional and stochastic localization fluorescence microscopy,” Phys. Rev. Lett.109(16), 168102 (2012).
[CrossRef] [PubMed]

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

2011 (8)

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
[CrossRef] [PubMed]

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2(5), 1377–1393 (2011).
[CrossRef] [PubMed]

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
[CrossRef] [PubMed]

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

2010 (4)

S. Stallinga and B. Rieger, “Accuracy of the Gaussian point spread function model in 2D localization microscopy,” Opt. Express18(24), 24461–24476 (2010).
[CrossRef] [PubMed]

S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010).
[CrossRef] [PubMed]

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

2009 (1)

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009).
[CrossRef] [PubMed]

2008 (1)

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

2007 (2)

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007).
[CrossRef] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

2006 (3)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

1994 (1)

1873 (1)

E. Abbe, “Beiträge zur theorie des Mikroskops und der mikro-skopischer Wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur theorie des Mikroskops und der mikro-skopischer Wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
[CrossRef]

Agrawal, A.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Annibale, P.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
[CrossRef] [PubMed]

Backer, A. S.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Backlund, M. P.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Baddeley, D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Bates, M.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Bertoncini, C. W.

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

Betzig, E.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Böhmer, M.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Burnette, D. T.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

Byars, J. M.

Cannell, M. B.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Chen, K. H.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
[CrossRef] [PubMed]

Cheyne, J. E.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Cox, S.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

Cremer, C.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Crossman, D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Dempsey, G. T.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
[CrossRef] [PubMed]

Dobson, C. M.

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

Doose, S.

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

Dudas, L.

Dun, A. R.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Duncan, R. R.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Dunn, A.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Edwards, R.

D. J. Metcalf, R. Edwards, N. Kumarswami, and A. E. Knight, “Test samples for optimizing STORM super-resolution microscopy,” J. Vis. Exp.79, 50579 (2013), doi:.
[CrossRef] [PubMed]

Enderlein, J.

Erdelyi, M.

M. Erdelyi, E. J. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express21(9), 10978–10988 (2013).
[CrossRef] [PubMed]

E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013).
[CrossRef]

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

Esbjörner, E. K.

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

Fornasiero, E. F.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Galbraith, C. G.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

Galbraith, J. A.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Gould, T. J.

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009).
[CrossRef] [PubMed]

Grover, G.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

Harke, B.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007).
[CrossRef] [PubMed]

Heidbreder, M.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

Heilemann, M.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010).
[CrossRef] [PubMed]

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

Heintzmann, R.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

Hell, S. W.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007).
[CrossRef] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
[CrossRef] [PubMed]

Henriques, R.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Huang, F.

Jayasinghe, I. D.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Jones, G. E.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

Jovanovic-Talisman, T.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

Kaminski, C. F.

E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013).
[CrossRef]

M. Erdelyi, E. J. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express21(9), 10978–10988 (2013).
[CrossRef] [PubMed]

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

Kaminski Schierle, G. S.

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

Klein, T.

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

Knight, A.

E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013).
[CrossRef]

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

Knight, A. E.

Krstic, I.

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

Kumarswami, N.

D. J. Metcalf, R. Edwards, N. Kumarswami, and A. E. Knight, “Test samples for optimizing STORM super-resolution microscopy,” J. Vis. Exp.79, 50579 (2013), doi:.
[CrossRef] [PubMed]

Lelek, M.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Lew, M. D.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Lidke, K. A.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lord, G. J.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Löschberger, A.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

Lu, W.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Martin, K. J.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Medda, R.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007).
[CrossRef] [PubMed]

Metcalf, D.

M. Erdelyi, E. J. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express21(9), 10978–10988 (2013).
[CrossRef] [PubMed]

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

Metcalf, D. J.

D. J. Metcalf, R. Edwards, N. Kumarswami, and A. E. Knight, “Test samples for optimizing STORM super-resolution microscopy,” J. Vis. Exp.79, 50579 (2013), doi:.
[CrossRef] [PubMed]

Mhlanga, M. M.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Moerner, W. E.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Montgomery, J. M.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Monypenny, J.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

Mukamel, E. A.

E. A. Mukamel and M. J. Schnitzer, “Unified resolution bounds for conventional and stochastic localization fluorescence microscopy,” Phys. Rev. Lett.109(16), 168102 (2012).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Piestun, R.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Pinotsi, D.

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

Prisner, T.

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

Qiu, Z.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Radenovic, A.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
[CrossRef] [PubMed]

Rees, E.

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

Rees, E. J.

M. Erdelyi, E. J. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express21(9), 10978–10988 (2013).
[CrossRef] [PubMed]

E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013).
[CrossRef]

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

Rickman, C.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Rieger, B.

Rossberger, S.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Rosten, E.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

Rothlisberger, U.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sahl, S. J.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Sauer, M.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010).
[CrossRef] [PubMed]

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

Scarselli, M.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
[CrossRef] [PubMed]

Schierle, G. S. K.

Schnitzer, M. J.

E. A. Mukamel and M. J. Schnitzer, “Unified resolution bounds for conventional and stochastic localization fluorescence microscopy,” Phys. Rev. Lett.109(16), 168102 (2012).
[CrossRef] [PubMed]

Schüttpelz, M.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

Schwartz, S. L.

Shroff, H.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

Sinko, J.

Soeller, C.

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Stallinga, S.

Tscherepanow, M.

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

Valtorta, F.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

van de Linde, S.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010).
[CrossRef] [PubMed]

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

Vanni, S.

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
[CrossRef] [PubMed]

Vaughan, J. C.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
[CrossRef] [PubMed]

Verkhusha, V. V.

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009).
[CrossRef] [PubMed]

Wichmann, J.

Willig, K. I.

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007).
[CrossRef] [PubMed]

Wolter, S.

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010).
[CrossRef] [PubMed]

Yang, L.

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Zhuang, X.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Zimmer, C.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beiträge zur theorie des Mikroskops und der mikro-skopischer Wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873).
[CrossRef]

Biomed. Opt. Express (1)

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011).
[CrossRef] [PubMed]

J. Biotechnol. (1)

S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010).
[CrossRef] [PubMed]

J. Microsc. (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010).
[CrossRef] [PubMed]

J. Opt. (1)

E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vis. Exp. (1)

D. J. Metcalf, R. Edwards, N. Kumarswami, and A. E. Knight, “Test samples for optimizing STORM super-resolution microscopy,” J. Vis. Exp.79, 50579 (2013), doi:.
[CrossRef] [PubMed]

Nat. Methods (7)

P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011).
[CrossRef] [PubMed]

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011).
[CrossRef] [PubMed]

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

Nat. Protoc. (2)

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009).
[CrossRef] [PubMed]

S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Nanoscopy (1)

E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:.
[CrossRef]

Photochem. Photobiol. Sci. (1)

S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

E. A. Mukamel and M. J. Schnitzer, “Unified resolution bounds for conventional and stochastic localization fluorescence microscopy,” Phys. Rev. Lett.109(16), 168102 (2012).
[CrossRef] [PubMed]

PLoS ONE (2)

D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011).
[CrossRef] [PubMed]

L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:.
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012).
[CrossRef] [PubMed]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

Other (8)

H. Lodish, D. Baltimore, A. Berk, S. L. Zipurssky, P. Matsudaira, and J. Darnell, Molecular Cell Biology (Freeman, 1995).

http://laser.cheng.cam.ac.uk/wiki/index.php/Resources

J. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).

J. Lakovich, Principles of Fluorescence Spectroscopy (Plenum, 1986).

http://www.andor.com/scientific-cameras/ixon-emccd-camera-series

http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html

http://titan.physx.u-szeged.hu/~adoptim/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The structure of the “star” (a), “array” (b), “vesicles” (c) and “lines” (d) samples

Fig. 2
Fig. 2

(a) The schematic view of the three state model of fluorescent dye in a switching buffer, (b) Two examples for randomly generated trajectories for fluorescent molecules, (c) Image acquisition model in time with the example-trajectories

Fig. 3
Fig. 3

The graphical user interface (GUI) of TestSTORM

Fig. 4
Fig. 4

The reconstructed star pattern at different z planes (0 nm is the focal plane, the contrast is the same in all figures, scale bar: 1µm)

Fig. 5
Fig. 5

Auto-scaled reconstructed images of array patterns with different numbers of molecules linked to the points of the array (linker length 75 nm, distance between the array points: 400 nm, scale bar: 500 nm). The insets depict the cross sections going through the centers of 5 array points.

Fig. 6
Fig. 6

The reconstructed line patterns with different numbers of linked molecules/µm (length of the line: 2200 nm, scale bar: 1µm)

Fig. 7
Fig. 7

Reconstructed image of labeled vesicles of clathrin mediated endocytosis with bridge formation between the vesicles, scale bar: 5 µm

Fig. 8
Fig. 8

Simulated samples with four vesicles captured with different frame rates and the number of molecules linked to the vesicles was varied, 1 pixel: 160 nm, in the insets: 1 pixel: 16 nm

Tables (2)

Tables Icon

Table 1 Dye and acquisition parameters used for simulation

Tables Icon

Table 2 Possible artifacts in cases of different sample structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C=( M ves M bridge )/ M ves ,

Metrics