Abstract

Scattering and absorption belong to the major problems in imaging the internal layers of a biological specimen. Due to the structural inhomogeneity of the specimen, the distribution of the structures in the upper layers of a given internal structure of interest is different from the lower layers that may result in different interception of scattered light, falling into the angular aperture of the microscope objective, from the object in each imaging view. Therefore, different spatial frequencies of the scattered light can be acquired from different (top and bottom) views. We have arranged an opposed-view dark-field digital holographic microscope (DHM) to collect the scattered light concurrently from both views with the aim to increase the contrast of internal structures and improve the signal-to-noise ratio. Implementing a DHM system gives the possibility to implement digital refocusing process and obtain multilayer images from each side without a depth scan of the object. The method is explained and the results are presented exemplary for a Drosophila embryo.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Abbott, “Cell culture: Biology’s new dimension,” Nature424(6951), 870–872 (2003).
    [CrossRef] [PubMed]
  2. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
    [CrossRef] [PubMed]
  3. M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
  4. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
    [CrossRef]
  5. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A2(2), 121–127 (1985).
    [CrossRef]
  6. M. Gu, “Principles of Three Dimensional Imaging in Confocal Microscopes,” Singapore, World Scientific Publishing Co Pte Ltd., 1996.
  7. J. Lim, H. Ding, M. Mir, R. Zhu, K. Tangella, and G. Popescu, “Born approximation model for light scattering by red blood cells,” Biomed. Opt. Express2(10), 2784–2791 (2011).
    [CrossRef] [PubMed]
  8. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  9. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
    [CrossRef] [PubMed]
  10. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun.3, 632 (2012).
    [CrossRef] [PubMed]
  11. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
    [CrossRef] [PubMed]
  12. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express18(13), 13708–13719 (2010).
    [CrossRef] [PubMed]
  13. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett.31(2), 178–180 (2006).
    [CrossRef] [PubMed]
  14. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  15. C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009).
    [CrossRef] [PubMed]
  16. A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt.18(8), 086009 (2013).
    [CrossRef] [PubMed]
  17. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
    [CrossRef] [PubMed]
  18. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express19(8), 7289–7298 (2011).
    [CrossRef] [PubMed]
  19. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
    [CrossRef] [PubMed]
  20. R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
    [CrossRef]
  21. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express15(21), 13640–13648 (2007).
    [CrossRef] [PubMed]
  22. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc.205(2), 165–176 (2002).
    [CrossRef] [PubMed]
  23. D. Fedorov, B. Sumengen, and B. S. Manjunath, “Mosaicking based framework for local enhancement of bio imagery,” Workshop on Multiscale Biological Imaging, Data Mining & Informatics, Santa Barbara, CA, USA, Sep. 2006.
  24. P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graphics2(4), 217–236 (1983).
    [CrossRef]

2013 (1)

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt.18(8), 086009 (2013).
[CrossRef] [PubMed]

2012 (1)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun.3, 632 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (3)

Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express18(13), 13708–13719 (2010).
[CrossRef] [PubMed]

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

2009 (1)

C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009).
[CrossRef] [PubMed]

2008 (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

2007 (2)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express15(21), 13640–13648 (2007).
[CrossRef] [PubMed]

2006 (2)

R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
[CrossRef]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett.31(2), 178–180 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Abbott, “Cell culture: Biology’s new dimension,” Nature424(6951), 870–872 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc.205(2), 165–176 (2002).
[CrossRef] [PubMed]

1985 (1)

1983 (1)

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graphics2(4), 217–236 (1983).
[CrossRef]

Abbott, A.

A. Abbott, “Cell culture: Biology’s new dimension,” Nature424(6951), 870–872 (2003).
[CrossRef] [PubMed]

Adelson, E. H.

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graphics2(4), 217–236 (1983).
[CrossRef]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Bauwens, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

Brady, D. J.

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

Burt, P. J.

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graphics2(4), 217–236 (1983).
[CrossRef]

Charrière, F.

Chen, M. J.

C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009).
[CrossRef] [PubMed]

Cheng, J. Y.

C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009).
[CrossRef] [PubMed]

ChmelÍk, R.

R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
[CrossRef]

Choi, K.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Colomb, T.

Conchello, J. A.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

Cuche, E.

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Depeursinge, C.

Ding, H.

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun.3, 632 (2012).
[CrossRef] [PubMed]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Faridian, A.

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt.18(8), 086009 (2013).
[CrossRef] [PubMed]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Fukui, K.

Hahn, J.

Hecksher-Sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Horisaki, R.

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Itoh, K.

Kajiyama, S.

Karch, H.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

Kemper, B.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

Ketelhut, S.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

Kim, M.

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).

Kitagawa, Y.

Kou, S. S.

Kuehn, J.

Langehanenberg, P.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc.205(2), 165–176 (2002).
[CrossRef] [PubMed]

Lee, C. W.

C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009).
[CrossRef] [PubMed]

Lichtman, J. W.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

Lim, J.

Lim, S.

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Marian, A.

Marquet, P.

Mir, M.

Montfort, F.

Müthing, J.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

Nishizawa, N.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Oron, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

Osten, W.

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt.18(8), 086009 (2013).
[CrossRef] [PubMed]

Ozeki, Y.

Pedrini, G.

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt.18(8), 086009 (2013).
[CrossRef] [PubMed]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Popescu, G.

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

Rohrbach, A.

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun.3, 632 (2012).
[CrossRef] [PubMed]

Rosen, J.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Sharpe, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Streibl, N.

Sumimura, K.

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

Tangella, K.

Umemura, W.

Vollmer, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

von Bally, G.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

Wei, P. K.

C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009).
[CrossRef] [PubMed]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

Zhu, R.

ACM Trans. Graphics (1)

P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graphics2(4), 217–236 (1983).
[CrossRef]

Biomed. Opt. Express (1)

J. Biomed. Opt. (3)

C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009).
[CrossRef] [PubMed]

A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt.18(8), 086009 (2013).
[CrossRef] [PubMed]

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
[CrossRef] [PubMed]

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc.205(2), 165–176 (2002).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Struct. Biol. (1)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004).
[CrossRef] [PubMed]

Nat. Commun. (1)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun.3, 632 (2012).
[CrossRef] [PubMed]

Nat. Methods (3)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008).
[CrossRef]

Nature (1)

A. Abbott, “Cell culture: Biology’s new dimension,” Nature424(6951), 870–872 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Science (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002).
[CrossRef] [PubMed]

SPIE Rev. (1)

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).

Other (2)

D. Fedorov, B. Sumengen, and B. S. Manjunath, “Mosaicking based framework for local enhancement of bio imagery,” Workshop on Multiscale Biological Imaging, Data Mining & Informatics, Santa Barbara, CA, USA, Sep. 2006.

M. Gu, “Principles of Three Dimensional Imaging in Confocal Microscopes,” Singapore, World Scientific Publishing Co Pte Ltd., 1996.

Supplementary Material (1)

» Media 1: MOV (4605 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Left: A schematic of a bright/dark-field objective. Right: The frequency band-pass in the [ k y , k z ] plane for a 20x Nikon bright/dark-field objective with NA = 0.45. Each blue and red curves represent the band-pass frequency corresponded to a specific incident beam angle in bright and dark field modes, respectively. The dashed red curve shows the frequency band transferred by the dark-field illumination angle of θ = 90°, for which the transmitted and reflected frequencies overlap.

Fig. 2
Fig. 2

(a) The spatial frequency distribution in the case of opposed-view bright/dark-field imaging, having both reflection and transmission modes for each imaging view. (b) A simplified schematic of a sub-millimeter sized biological object. A diagram of the frequency vectors, emanating from the structure at the center, is mapped on the object in the axial direction. The green and blue arrows show the vectors directed towards the top and bottom views, respectively. Due to the inhomogeneous distribution of structures in subsequent layers, different frequencies are collectable in each imaging view. The bottom diagram represents the combination of non-intercepted frequencies collected from both views. This is similar to the case of not having the scatterers in subsequent layers.

Fig. 3
Fig. 3

The schematic of an opposed-view dark-field digital holographic microscope.

Fig. 4
Fig. 4

(a) A picture of the actual opposed-view DHM setup in the lab, being arranged on a vertical stand. The setup has the possibility to operate both in dark-field (DF) and bright-field (BF) modes simultaneously. The blue and red beam paths indicate the bright- and dark-field path, respectively. The dashed lines in each mode indicate the reference beam.

Fig. 5
Fig. 5

(a) The reconstructed dark-field intensity image of a Drosophila embryo taken by one speckle-field illumination. (b) The reconstructed intensity after averaging over 200 successive speckle-field illuminations. (c) The bright-field image of the same Drosophila embryo, taken by a short coherent source at the wavelength of 405 nm. The scale bar in (b) is 25 µm.

Fig. 6
Fig. 6

(a) A raw reconstructed dark-field intensity image for a given object plane of a Drosophila embryo, averaged over speckle-fields. (b) The locally enhanced version of the image. (c). The contrast enhanced image using element-wise self-multiplications of the image matrix. The scale bar in (a) is 25 µm.

Fig. 7
Fig. 7

(a) A reconstructed intensity image of (a) the top and (b) the bottom view for a given layer of a Drosophila embryo. (c, d) The fused image obtained using the pixel-based and tile-based approach, respectively. (e) The magnified top and bottom view images of the regions marked with numbers in (a). The arrows represent some of the structures visible in one view, while missing in the other. (f) The magnified images of the same regions as (a) after performing image fusion process. The scale bar in (a) is 25 µm.

Fig. 8
Fig. 8

(a) A portion of the final fused image obtained using conventional mosaicking and (b) by taking overlapping patches and applying weighting process. (c) The sigmoid functions, SL and SR, used for weighting the left (top) and right (bottom) overlapping sections of each tile; (c.1) An example of conventional mosaicking and (c.2) the result of applying the sigmoid weighting function. (d) The stacks of images obtained from the opposed-view fusion for different layers, leading to a digital refocusing multimedia file (Media 1) of the internal structure of a Drosophila embryo.

Fig. 9
Fig. 9

Confocal images of a texture (from an optical cleaning tissue), along with the images obtained through opposed-view dark-field imaging for two layers of the same tissue separated by 20 µm. The confocal image was taken with a 50x objective with NA of 0.8 at a wavelength of 850 nm and the opposed-view image was taken with a 20x dark-field objective with NA of 0.45. the scale bar is 30 µm.

Metrics