Abstract

In this paper we investigate the use of a digital holographic microscope, with partial spatial coherent illumination, for the automated detection and tracking of spermatozoa. This in vitro technique for the analysis of quantitative parameters is useful for assessment of semen quality. In fact, thanks to the capabilities of digital holography, the developed algorithm allows us to resolve in-focus amplitude and phase maps of the cells under study, independently of focal plane of the sample image. We have characterized cell motility on clinical samples of seminal fluid. In particular, anomalous sperm cells were characterized and the quantitative motility parameters were compared to those of normal sperm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
    [CrossRef] [PubMed]
  2. D. Mortimer, I. J. Pandya, and R. S. Sawers, “Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro,” J. Reprod. Fertil.78(1), 93–102 (1986).
    [CrossRef] [PubMed]
  3. P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012).
    [CrossRef] [PubMed]
  4. M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
    [CrossRef] [PubMed]
  5. Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
    [CrossRef]
  6. S. T. Mortimer, “CASA--Practical aspects,” J. Androl.21(4), 515–524 (2000).
    [PubMed]
  7. T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012).
    [CrossRef] [PubMed]
  8. L. Yu and L. Cai, “Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram,” J. Opt. Soc. Am. A18(5), 1033–1045 (2001).
    [CrossRef] [PubMed]
  9. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.45(5), 836–850 (2006).
    [CrossRef] [PubMed]
  10. F. Verpillat, F. Joud, P. Desbiolles, and M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express19(27), 26044–26055 (2011).
    [CrossRef] [PubMed]
  11. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express13(18), 6738–6749 (2005).
    [CrossRef] [PubMed]
  12. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt.52(1), A68–A80 (2013).
    [CrossRef] [PubMed]
  13. Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
    [CrossRef]
  14. G. Di Caprio, P. Dardano, G. Coppola, S. Cabrini, and V. Mocella, “Digital holographic microscopy characterization of superdirective beam by metamaterial,” Opt. Lett.37(7), 1142–1144 (2012).
    [CrossRef] [PubMed]
  15. G. Di Caprio, G. Coppola, L. De Stefano, M. De Stefano, A. Antonucci, R. Congestri, and E. De Tommasi, “Shedding light on diatom photonics by means of digital holography,” J. Biophotonics DOI: http://dx.doi.org/ (2012).
    [CrossRef]
  16. G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).
  17. P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011).
    [CrossRef] [PubMed]
  18. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
    [CrossRef] [PubMed]
  19. I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
    [CrossRef] [PubMed]
  20. G. Coppola, G. Di Caprio, M. Wilding, P. Ferraro, G. Esposito, L. Di Matteo, R. Dale, G. Coppola and B. Dale, “Digital holographic microscopy for the evaluation of human sperm structure,” Zygote DOI: http://dx.doi.org/ (2013).
    [CrossRef]
  21. P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research2, 1–11 (2001).
  22. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt.43(5), 1131–1139 (2004).
    [CrossRef] [PubMed]
  23. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  24. J. W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill 1996).
  25. M. Nazarathy and J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am.70(2), 150–159 (1980).
    [CrossRef]
  26. F. Dubois, C. Yourassowky, N. Callens, C. Minetti, P. Queeckers, T. Podgorski, and A. Brandenbrurger, “Digital Holographic Microscopy working with a Partially Spatial Coherent Source,” Coherent Light Microscopy (Springer 2011).
  27. G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt.48, 1035–1041 (2001).
  28. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42(11), 1938–1946 (2003).
    [CrossRef] [PubMed]
  29. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008).
    [CrossRef] [PubMed]
  30. P. Gao, B. Yao, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett.37(17), 3630–3632 (2012).
    [CrossRef] [PubMed]
  31. J. Kostencka, T. Kozacki, and K. Lizewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun.297, 20–26 (2013).
    [CrossRef]
  32. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express14(13), 5895–5908 (2006).
    [CrossRef] [PubMed]
  33. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express19(7), 6684–6698 (2011).
    [CrossRef] [PubMed]
  34. N. Otsu, “A threshold selection method from gray-level histograms,” Automatica11, 285–296 (1975).
  35. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, 1976).
  36. Y. Hao and A. Asundi, “Impact of charge-coupled device size on axial measurement error in digital holographic system,” Opt. Lett.38(8), 1194–1196 (2013).
    [CrossRef] [PubMed]
  37. G. Di Caprio, A. El Mallahi, P. Ferraro, G. Coppola and F. Dubois, “Automatic algorithm for the detection and 3D tracking of biological particles in digital holographic microscopy.” Proceeding. EOS: Topical Meeting on Optical Microsystems (2011).
  38. G. Di Caprio, Quantitative label-free cell imaging by means of digital holographic miscroscopy: a roadmap for a complete characterization of biological samples, PhD dissertation (University of Naples “Federico II” 2011).

2013 (4)

A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt.52(1), A68–A80 (2013).
[CrossRef] [PubMed]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

J. Kostencka, T. Kozacki, and K. Lizewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

Y. Hao and A. Asundi, “Impact of charge-coupled device size on axial measurement error in digital holographic system,” Opt. Lett.38(8), 1194–1196 (2013).
[CrossRef] [PubMed]

2012 (4)

P. Gao, B. Yao, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing of digital holographic microscopy based on off-axis illuminations,” Opt. Lett.37(17), 3630–3632 (2012).
[CrossRef] [PubMed]

G. Di Caprio, P. Dardano, G. Coppola, S. Cabrini, and V. Mocella, “Digital holographic microscopy characterization of superdirective beam by metamaterial,” Opt. Lett.37(7), 1142–1144 (2012).
[CrossRef] [PubMed]

P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012).
[CrossRef] [PubMed]

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (3)

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

2008 (2)

M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
[CrossRef] [PubMed]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (1)

2003 (1)

2001 (3)

G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt.48, 1035–1041 (2001).

P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research2, 1–11 (2001).

L. Yu and L. Cai, “Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram,” J. Opt. Soc. Am. A18(5), 1033–1045 (2001).
[CrossRef] [PubMed]

2000 (1)

S. T. Mortimer, “CASA--Practical aspects,” J. Androl.21(4), 515–524 (2000).
[PubMed]

1986 (1)

D. Mortimer, I. J. Pandya, and R. S. Sawers, “Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro,” J. Reprod. Fertil.78(1), 93–102 (1986).
[CrossRef] [PubMed]

1980 (1)

1975 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica11, 285–296 (1975).

Alfieri, D.

Asundi, A.

Auger, J.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Baker, H. W.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Balduzzi, D.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011).
[CrossRef] [PubMed]

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

Beebe, D. J.

M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
[CrossRef] [PubMed]

Behre, H. M.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Cabrini, S.

Cai, L.

Callens, N.

Chen, C.-Y.

Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
[CrossRef]

Chen, Y.-A.

Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
[CrossRef]

Cooper, T. G.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Coppola, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

G. Di Caprio, P. Dardano, G. Coppola, S. Cabrini, and V. Mocella, “Digital holographic microscopy characterization of superdirective beam by metamaterial,” Opt. Lett.37(7), 1142–1144 (2012).
[CrossRef] [PubMed]

P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011).
[CrossRef] [PubMed]

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express13(18), 6738–6749 (2005).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42(11), 1938–1946 (2003).
[CrossRef] [PubMed]

Crha, I.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
[CrossRef] [PubMed]

Dan, D.

Dardano, P.

De Nicola, S.

Denissenko, P.

P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012).
[CrossRef] [PubMed]

Desbiolles, P.

Di Caprio, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

G. Di Caprio, P. Dardano, G. Coppola, S. Cabrini, and V. Mocella, “Digital holographic microscopy characterization of superdirective beam by metamaterial,” Opt. Lett.37(7), 1142–1144 (2012).
[CrossRef] [PubMed]

P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011).
[CrossRef] [PubMed]

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

Dirksen, D.

Distante, C.

Dubois, F.

El Mallahi, A.

Ferraro, P.

Finizio, A.

Galli, A.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011).
[CrossRef] [PubMed]

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

Gao, P.

Garcia-Sucerquia, J.

Gioffrè, M.

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

Grilli, S.

Gross, M.

Guo, R.

Hahn, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

Hao, Y.

Haubert, K.

M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
[CrossRef] [PubMed]

Haugen, T. B.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Huang, Z.-W.

Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
[CrossRef]

Huser, M.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
[CrossRef] [PubMed]

Istasse, E.

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Joud, F.

Kantsler, V.

P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012).
[CrossRef] [PubMed]

Kemper, B.

Kim, H.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

Kim, M.

Kim, S.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

Kirkman-Brown, J.

P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012).
[CrossRef] [PubMed]

Klages, P.

Kostencka, J.

J. Kostencka, T. Kozacki, and K. Lizewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

Kozacki, T.

J. Kostencka, T. Kozacki, and K. Lizewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

Kreuzer, H. J.

Kruger, T.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Langehanenberg, P.

Lee, B.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

Lei, M.

Lim, Y.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

Lin, C.-M.

Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
[CrossRef]

Lizewski, K.

J. Kostencka, T. Kozacki, and K. Lizewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

Lo, C. M.

Lopez-Garcia, M. D.

M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
[CrossRef] [PubMed]

Lousova, E.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
[CrossRef] [PubMed]

Ma, B.

Magro, C.

Mann, C.

Mbizvo, M. T.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Memmolo, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011).
[CrossRef] [PubMed]

Merola, F.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

Miccio, L.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

Min, J.

Minetti, C.

Mocella, V.

Monnom, O.

Monson, R. L.

M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
[CrossRef] [PubMed]

Mortimer, D.

D. Mortimer, I. J. Pandya, and R. S. Sawers, “Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro,” J. Reprod. Fertil.78(1), 93–102 (1986).
[CrossRef] [PubMed]

Mortimer, S. T.

S. T. Mortimer, “CASA--Practical aspects,” J. Androl.21(4), 515–524 (2000).
[PubMed]

Nazarathy, M.

Netti, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

Noonan, E.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica11, 285–296 (1975).

Ozcan, A.

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012).
[CrossRef] [PubMed]

Pandya, I. J.

D. Mortimer, I. J. Pandya, and R. S. Sawers, “Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro,” J. Reprod. Fertil.78(1), 93–102 (1986).
[CrossRef] [PubMed]

Park, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

Paturzo, M.

Pedrini, G.

G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt.48, 1035–1041 (2001).

Pierattini, G.

Pohanka, M.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
[CrossRef] [PubMed]

Puglisi, R.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

P. Memmolo, G. Di Caprio, C. Distante, M. Paturzo, R. Puglisi, D. Balduzzi, A. Galli, G. Coppola, and P. Ferraro, “Identification of bovine sperm head for morphometry analysis in quantitative phase-contrast holographic microscopy,” Opt. Express19(23), 23215–23226 (2011).
[CrossRef] [PubMed]

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

Requena, M. L.

Saffioti, N.

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

Sawers, R. S.

D. Mortimer, I. J. Pandya, and R. S. Sawers, “Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro,” J. Reprod. Fertil.78(1), 93–102 (1986).
[CrossRef] [PubMed]

Schedin, S.

G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt.48, 1035–1041 (2001).

Schockaert, C.

Shamir, J.

Smith, D. J.

P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012).
[CrossRef] [PubMed]

Striano, V.

Su, T. W.

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012).
[CrossRef] [PubMed]

Tiziani, H. J.

G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt.48, 1035–1041 (2001).

Tsai, F.-S.

Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
[CrossRef]

Ventruba, P.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
[CrossRef] [PubMed]

Verpillat, F.

Vogelsong, K. M.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

von Bally, G.

von Eckardstein, S.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Wang, C.

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

Wheeler, M. B.

M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
[CrossRef] [PubMed]

Wo, A. M.

Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
[CrossRef]

Xu, W.

Xue, L.

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012).
[CrossRef] [PubMed]

Yan, S.

Yao, B.

Ye, T.

Yourassowsky, C.

Yu, L.

Zakova, J.

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
[CrossRef] [PubMed]

Zheng, J.

3D Research (1)

P. Langehanenberg, G. von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Research2, 1–11 (2001).

Appl. Opt. (5)

Automatica (1)

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica11, 285–296 (1975).

Biomed. Microdevices (1)

M. D. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomed. Microdevices10(5), 709–718 (2008).
[CrossRef] [PubMed]

Hum. Reprod. Update (1)

T. G. Cooper, E. Noonan, S. von Eckardstein, J. Auger, H. W. Baker, H. M. Behre, T. B. Haugen, T. Kruger, C. Wang, M. T. Mbizvo, and K. M. Vogelsong, “World Health Organization reference values for human semen characteristics,” Hum. Reprod. Update16(3), 231–245 (2010).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron.46(3), 300–305 (2010).
[CrossRef]

G. Di Caprio, M. Gioffrè, N. Saffioti, S. Grilli, P. Ferraro, R. Puglisi, D. Balduzzi, A. Galli, and G. Coppola, “Quantitative label-free animal sperm imaging by means of digital holographic microscopy,” IEEE J. Quantum Electron.16(4), 833–840 (2010).

J. Androl. (1)

S. T. Mortimer, “CASA--Practical aspects,” J. Androl.21(4), 515–524 (2000).
[PubMed]

J. Assist. Reprod. Genet. (1)

I. Crha, J. Zakova, M. Huser, P. Ventruba, E. Lousova, and M. Pohanka, “Digital holographic microscopy in human sperm imaging,” J. Assist. Reprod. Genet.28(8), 725–729 (2011).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt.48, 1035–1041 (2001).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Reprod. Fertil. (1)

D. Mortimer, I. J. Pandya, and R. S. Sawers, “Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro,” J. Reprod. Fertil.78(1), 93–102 (1986).
[CrossRef] [PubMed]

Lab Chip (1)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip13(23), 4512–4516 (2013).
[CrossRef] [PubMed]

Microfluid Nanofluidics (1)

Y.-A. Chen, Z.-W. Huang, F.-S. Tsai, C.-Y. Chen, C.-M. Lin, and A. M. Wo, “Analysis of sperm concentration and motility in a microfluidic device,” Microfluid Nanofluidics10(1), 59–67 (2011).
[CrossRef]

Opt. Commun. (1)

J. Kostencka, T. Kozacki, and K. Lizewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, “Human spermatozoa migration in microchannels reveals boundary-following navigation,” Proc. Natl. Acad. Sci. U.S.A.109(21), 8007–8010 (2012).
[CrossRef] [PubMed]

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A.109(40), 16018–16022 (2012).
[CrossRef] [PubMed]

Other (7)

J. W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill 1996).

F. Dubois, C. Yourassowky, N. Callens, C. Minetti, P. Queeckers, T. Podgorski, and A. Brandenbrurger, “Digital Holographic Microscopy working with a Partially Spatial Coherent Source,” Coherent Light Microscopy (Springer 2011).

G. Coppola, G. Di Caprio, M. Wilding, P. Ferraro, G. Esposito, L. Di Matteo, R. Dale, G. Coppola and B. Dale, “Digital holographic microscopy for the evaluation of human sperm structure,” Zygote DOI: http://dx.doi.org/ (2013).
[CrossRef]

G. Di Caprio, G. Coppola, L. De Stefano, M. De Stefano, A. Antonucci, R. Congestri, and E. De Tommasi, “Shedding light on diatom photonics by means of digital holography,” J. Biophotonics DOI: http://dx.doi.org/ (2012).
[CrossRef]

G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, 1976).

G. Di Caprio, A. El Mallahi, P. Ferraro, G. Coppola and F. Dubois, “Automatic algorithm for the detection and 3D tracking of biological particles in digital holographic microscopy.” Proceeding. EOS: Topical Meeting on Optical Microsystems (2011).

G. Di Caprio, Quantitative label-free cell imaging by means of digital holographic miscroscopy: a roadmap for a complete characterization of biological samples, PhD dissertation (University of Naples “Federico II” 2011).

Supplementary Material (4)

» Media 1: MP4 (10587 KB)     
» Media 2: MP4 (937 KB)     
» Media 3: MP4 (5879 KB)     
» Media 4: MP4 (8005 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

DHM working with a partially spatial coherent source from a laser beam. L1, focusing lens; RGG, rotating ground glass for spatial coherence reduction; M1–M3, mirrors; L2, collimating lens; BS1, BS2, beam splitters; L3, L4, identical microscope objectives lenses ( × 63); L5, refocusing lens; CCD, charge-coupled device camera; S, sample.

Fig. 2
Fig. 2

Procedure for transversal tracking. (a) Compensated phase map; (b) a numerical mask is applied to remove the borders of the microchannel; (c) Region of interest; (d) binary image obtained from (c) via the Otsu’s method; e) Particle position detected via correlation function; (f) Reconstructed transversal path. Scale bars are 20 μm in a), b) and e), 5 μm in c) and d).

Fig. 3
Fig. 3

Tracking of a Giardia Lamblia flowing in a microfluidic channel (frame from Media 1). (a) Retrieved path of the particle under study; Reconstructed phase map in the acquisition plane (b) and propagated phase map (c) in the focus plane evaluated by means of the self-focusing criterion. The titles of (b) and (c) refers to the Z positions. Scale bars are 6 μm, data were acquired over 5.12 s.

Fig. 4
Fig. 4

Procedure for transversal tracking of a Paramecium moving in a cell. (a) Reconstructed phase map; (b) Mean of the reconstructed phase maps; (c) Equalized phase; (f) Difference of the two following frames (d) and (e).

Fig. 5
Fig. 5

Multiple particles tracking (frame from Media 2). The algorithm is run without (a) and with (b) the use of a proximity criterion; (c) Reconstructed three-dimensional path. Scale bars are 100 μm, data were acquired over 6.2 s.

Fig. 6
Fig. 6

Single sperm cells tracking (frame from Media 3). Transversal (a) and three-dimensional path (b) of a sperm cell presenting a bent tail; c) a phase map of the sperm cell, showing the morphological defect; the colorbar is in rad. Scale bar is 20 μm in a) and 10 μm in b), data were acquired over 36.8 s.

Fig. 7
Fig. 7

Multiple sperm cells tracking (frame from Media 4). Transversal (a) and reconstructed three-dimensional path (b). Scale bar is 20 μm, data were acquired over is 11 s.

Tables (1)

Tables Icon

Table 1 Motility parameters evaluated for the cells plotted in Fig. 7.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

O p r o p ( ξ , η ) = e x p ( i k d ) { F 1 [ e x p ( i k d λ 2 2 ( υ 2 + μ 2 ) ) ] [ F ( O i ( u , y ) ) ] }
O p r o p ( m , n ) =   e x p ( i k d ) { F D 1 [ e x p ( i k d λ 2 2 N 2 Δ 2 ( U 2 + V 2 ) ) ] [ F D O i ( h , k ) ] }
F D { g ( k , l ) } = 1 N k , l = 0 N 1 e x p [ 2 π i N ( m k + n l ) ] g ( k , l ) .
I p r o p ( m , n ) = | O p r o p ( m , n ) | 2 , φ p r o p = a r c tan I m [ O p r o p ( m , n ) ] R e [ O p r o p ( m , n ) ] .
ϕ E q = ϕ ϕ m e a n ϕ m e a n
L I N = V S L V C L × 100 ; S T R = V S L V A P × 100 ; W O B = V A P V C L × 100.

Metrics