Abstract

Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science201(4362), 1249–1251 (1978).
    [CrossRef] [PubMed]
  2. F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res.28(5), 639–657 (1988).
    [CrossRef] [PubMed]
  3. C. F. Wildsoet and J. D. Pettigrew, “Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens: Evidence for local-control of eye growth,” Clin. Vis. Sci.3, 99–107 (1988).
  4. J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci.66(12), 854–858 (1989).
    [CrossRef] [PubMed]
  5. D. Troilo and J. Wallman, “The regulation of eye growth and refractive state: an experimental study of emmetropization,” Vision Res.31(7-8), 1237–1250 (1991).
    [CrossRef] [PubMed]
  6. Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
    [CrossRef] [PubMed]
  7. J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
    [CrossRef] [PubMed]
  8. H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995).
    [CrossRef] [PubMed]
  9. X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995).
    [CrossRef] [PubMed]
  10. J. R. Phillips, M. Khalaj, and N. A. McBrien, “Induced myopia associated with increased scleral creep in chick and tree shrew eyes,” Invest. Ophthalmol. Vis. Sci.41(8), 2028–2034 (2000).
    [PubMed]
  11. S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
    [CrossRef] [PubMed]
  12. Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
    [CrossRef] [PubMed]
  13. C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008).
    [CrossRef] [PubMed]
  14. M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012).
    [CrossRef] [PubMed]
  15. K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell imaging of the chick retina with adaptive optics,” Curr. Eye Res.36(10), 947–957 (2011).
    [CrossRef] [PubMed]
  16. J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express2(6), 1637–1648 (2011).
    [CrossRef] [PubMed]
  17. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  18. Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004).
    [CrossRef] [PubMed]
  19. Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: Shedding light on the chemistry of vision,” Biochemistry46(34), 9674–9684 (2007).
    [CrossRef] [PubMed]
  20. B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008).
    [CrossRef] [PubMed]
  21. J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009).
    [CrossRef] [PubMed]
  22. R.-W. Lu, Y.-C. Li, T. Ye, C. Strang, K. Keyser, C. A. Curcio, and X.-C. Yao, “Two-photon excited autofluorescence imaging of freshly isolated frog retinas,” Biomed. Opt. Express2(6), 1494–1503 (2011).
    [CrossRef] [PubMed]
  23. E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized non-linear microscopy of ex vivo human retinas,” J. Biomed. Opt.15(2), 026007 (2010).
    [CrossRef] [PubMed]
  24. M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).
  25. M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
    [CrossRef] [PubMed]
  26. J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).
  27. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
    [CrossRef] [PubMed]
  28. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express2(1), 139–148 (2011).
    [CrossRef] [PubMed]
  29. D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996).
    [CrossRef] [PubMed]
  30. F. Schaeffel and H. C. Howland, “Visual optics in normal and ametropic chickens,” Clin. Vis. Sci.3, 83–89 (1988).
  31. J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010).
    [CrossRef] [PubMed]
  32. F. Schaeffel and H. C. Howland, “Properties of the feedback loops controlling eye growth and refractive state in the chicken,” Vision Res.31(4), 717–734 (1991).
    [CrossRef] [PubMed]
  33. A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res.42(21), 2409–2417 (2002).
    [CrossRef] [PubMed]
  34. M. Bartmann and F. Schaeffel, “A simple mechanism for emmetropization without cues from accommodation or colour,” Vision Res.34(7), 873–876 (1994).
    [CrossRef] [PubMed]
  35. N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol.209(23), 4776–4787 (2006).
    [CrossRef] [PubMed]
  36. Y. Chui, M. Yap, and H. Chan, “The retinal ganglion cell density and nerve fiber layer thickness in the human myopic eye,” Invest. Ophthalmol. Vis. Sci.43, 183 E-Abstract (2002).
  37. H. E. Grossniklaus and W. R. Green, “Pathologic findings in pathologic myopia,” Retina12(2), 127–133 (1992).
    [CrossRef] [PubMed]
  38. Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
    [CrossRef] [PubMed]
  39. T. Y. P. Chui, H.-X. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
    [CrossRef] [PubMed]
  40. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
    [CrossRef] [PubMed]
  41. V. B. Morris, “Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor,” J. Comp. Neurol.140(3), 359–397 (1970).
    [CrossRef] [PubMed]
  42. J. K. Bowmaker and A. Knowles, “The visual pigments and oil droplets of the chicken retina,” Vision Res.17(7), 755–764 (1977).
    [CrossRef] [PubMed]
  43. R. Over and D. Moore, “Spatial acuity of the chicken,” Brain Res.211(2), 424–426 (1981).
    [CrossRef] [PubMed]
  44. H. M. Johnson, “Visual pattern-discrimination in the vertebrate: II. Comparative visual acuity in the dog, the monkey and the chick,” J. Anim. Behav.4(5), 340–361 (1914).
    [CrossRef]
  45. L. R. DeMello, T. M. Foster, and W. Temple, “Discriminative performance of the domestic hen in a visual acuity task,” J. Exp. Anal. Behav.58(1), 147–157 (1992).
    [CrossRef] [PubMed]
  46. K. L. Schmid and C. F. Wildsoet, “Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm,” Vision Res.38(17), 2629–2634 (1998).
    [CrossRef] [PubMed]
  47. E. Diedrich and F. Schaeffel, “Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro,” Vis. Neurosci.26(5-6), 467–476 (2009).
    [CrossRef] [PubMed]
  48. N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
    [CrossRef] [PubMed]
  49. T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005).
    [CrossRef] [PubMed]

2012 (1)

M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (5)

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized non-linear microscopy of ex vivo human retinas,” J. Biomed. Opt.15(2), 026007 (2010).
[CrossRef] [PubMed]

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010).
[CrossRef] [PubMed]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

2009 (2)

E. Diedrich and F. Schaeffel, “Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro,” Vis. Neurosci.26(5-6), 467–476 (2009).
[CrossRef] [PubMed]

J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009).
[CrossRef] [PubMed]

2008 (4)

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008).
[CrossRef] [PubMed]

T. Y. P. Chui, H.-X. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008).
[CrossRef] [PubMed]

2007 (3)

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: Shedding light on the chemistry of vision,” Biochemistry46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol.209(23), 4776–4787 (2006).
[CrossRef] [PubMed]

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004).
[CrossRef] [PubMed]

2002 (2)

Y. Chui, M. Yap, and H. Chan, “The retinal ganglion cell density and nerve fiber layer thickness in the human myopic eye,” Invest. Ophthalmol. Vis. Sci.43, 183 E-Abstract (2002).

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res.42(21), 2409–2417 (2002).
[CrossRef] [PubMed]

2000 (1)

J. R. Phillips, M. Khalaj, and N. A. McBrien, “Induced myopia associated with increased scleral creep in chick and tree shrew eyes,” Invest. Ophthalmol. Vis. Sci.41(8), 2028–2034 (2000).
[PubMed]

1998 (1)

K. L. Schmid and C. F. Wildsoet, “Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm,” Vision Res.38(17), 2629–2634 (1998).
[CrossRef] [PubMed]

1997 (1)

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

1996 (1)

D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996).
[CrossRef] [PubMed]

1995 (3)

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995).
[CrossRef] [PubMed]

X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995).
[CrossRef] [PubMed]

1994 (1)

M. Bartmann and F. Schaeffel, “A simple mechanism for emmetropization without cues from accommodation or colour,” Vision Res.34(7), 873–876 (1994).
[CrossRef] [PubMed]

1993 (1)

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

1992 (2)

H. E. Grossniklaus and W. R. Green, “Pathologic findings in pathologic myopia,” Retina12(2), 127–133 (1992).
[CrossRef] [PubMed]

L. R. DeMello, T. M. Foster, and W. Temple, “Discriminative performance of the domestic hen in a visual acuity task,” J. Exp. Anal. Behav.58(1), 147–157 (1992).
[CrossRef] [PubMed]

1991 (2)

F. Schaeffel and H. C. Howland, “Properties of the feedback loops controlling eye growth and refractive state in the chicken,” Vision Res.31(4), 717–734 (1991).
[CrossRef] [PubMed]

D. Troilo and J. Wallman, “The regulation of eye growth and refractive state: an experimental study of emmetropization,” Vision Res.31(7-8), 1237–1250 (1991).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1989 (1)

J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci.66(12), 854–858 (1989).
[CrossRef] [PubMed]

1988 (3)

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res.28(5), 639–657 (1988).
[CrossRef] [PubMed]

C. F. Wildsoet and J. D. Pettigrew, “Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens: Evidence for local-control of eye growth,” Clin. Vis. Sci.3, 99–107 (1988).

F. Schaeffel and H. C. Howland, “Visual optics in normal and ametropic chickens,” Clin. Vis. Sci.3, 83–89 (1988).

1981 (1)

R. Over and D. Moore, “Spatial acuity of the chicken,” Brain Res.211(2), 424–426 (1981).
[CrossRef] [PubMed]

1978 (1)

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

1977 (1)

J. K. Bowmaker and A. Knowles, “The visual pigments and oil droplets of the chicken retina,” Vision Res.17(7), 755–764 (1977).
[CrossRef] [PubMed]

1970 (1)

V. B. Morris, “Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor,” J. Comp. Neurol.140(3), 359–397 (1970).
[CrossRef] [PubMed]

1914 (1)

H. M. Johnson, “Visual pattern-discrimination in the vertebrate: II. Comparative visual acuity in the dog, the monkey and the chick,” J. Anim. Behav.4(5), 340–361 (1914).
[CrossRef]

Agopov, M.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Alvarez-Diez, C.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Anderson, R. S.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008).
[CrossRef] [PubMed]

Artal, P.

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized non-linear microscopy of ex vivo human retinas,” J. Biomed. Opt.15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

Baehr, W.

Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004).
[CrossRef] [PubMed]

Barila, A. M.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995).
[CrossRef] [PubMed]

Barrie, D. L.

J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci.66(12), 854–858 (1989).
[CrossRef] [PubMed]

Bartmann, M.

M. Bartmann and F. Schaeffel, “A simple mechanism for emmetropization without cues from accommodation or colour,” Vision Res.34(7), 873–876 (1994).
[CrossRef] [PubMed]

Batten, M. L.

Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004).
[CrossRef] [PubMed]

Bessho, K.

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Bhagwandin, A.

J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010).
[CrossRef] [PubMed]

Bille, J. F.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Bindewald-Wittich, A.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Bowmaker, J. K.

J. K. Bowmaker and A. Knowles, “The visual pigments and oil droplets of the chicken retina,” Vision Res.17(7), 755–764 (1977).
[CrossRef] [PubMed]

Bueno, J. M.

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized non-linear microscopy of ex vivo human retinas,” J. Biomed. Opt.15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

Bunghardt, K.

M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012).
[CrossRef] [PubMed]

Burns, S. A.

T. Y. P. Chui, H.-X. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

Campbell, M. C. W.

M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012).
[CrossRef] [PubMed]

Chan, H.

Y. Chui, M. Yap, and H. Chan, “The retinal ganglion cell density and nerve fiber layer thickness in the human myopic eye,” Invest. Ophthalmol. Vis. Sci.43, 183 E-Abstract (2002).

Chan, H. H.

T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005).
[CrossRef] [PubMed]

Choi, S. S.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell imaging of the chick retina with adaptive optics,” Curr. Eye Res.36(10), 947–957 (2011).
[CrossRef] [PubMed]

Christensen, A. M.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

Chui, T. Y.

T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005).
[CrossRef] [PubMed]

Chui, T. Y. P.

T. Y. P. Chui, H.-X. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

Chui, Y.

Y. Chui, M. Yap, and H. Chan, “The retinal ganglion cell density and nerve fiber layer thickness in the human myopic eye,” Invest. Ophthalmol. Vis. Sci.43, 183 E-Abstract (2002).

Coletta, N. J.

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

Collin, S. P.

N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol.209(23), 4776–4787 (2006).
[CrossRef] [PubMed]

Corbo, J. C.

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Crewther, D. P.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995).
[CrossRef] [PubMed]

Crewther, S. G.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995).
[CrossRef] [PubMed]

Crowley, J. C.

D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996).
[CrossRef] [PubMed]

Curcio, C. A.

DeMello, L. R.

L. R. DeMello, T. M. Foster, and W. Temple, “Discriminative performance of the domestic hen in a visual acuity task,” J. Exp. Anal. Behav.58(1), 147–157 (1992).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Diedrich, E.

E. Diedrich and F. Schaeffel, “Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro,” Vis. Neurosci.26(5-6), 467–476 (2009).
[CrossRef] [PubMed]

Doble, N.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell imaging of the chick retina with adaptive optics,” Curr. Eye Res.36(10), 947–957 (2011).
[CrossRef] [PubMed]

Dubra, A.

Eitner, A.

B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008).
[CrossRef] [PubMed]

Finlay, B. L.

D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996).
[CrossRef] [PubMed]

Fitzgerald, M. E.

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

Foster, T. M.

L. R. DeMello, T. M. Foster, and W. Temple, “Discriminative performance of the domestic hen in a visual acuity task,” J. Exp. Anal. Behav.58(1), 147–157 (1992).
[CrossRef] [PubMed]

Fujikado, T.

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Gamlin, P. D.

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

Giakoumaki, A.

Giese, G.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Glasser, A.

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res.28(5), 639–657 (1988).
[CrossRef] [PubMed]

Gottlieb, M. D.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

Green, W. R.

H. E. Grossniklaus and W. R. Green, “Pathologic findings in pathologic myopia,” Retina12(2), 127–133 (1992).
[CrossRef] [PubMed]

Grossniklaus, H. E.

H. E. Grossniklaus and W. R. Green, “Pathologic findings in pathologic myopia,” Retina12(2), 127–133 (1992).
[CrossRef] [PubMed]

Gualda, E. J.

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized non-linear microscopy of ex vivo human retinas,” J. Biomed. Opt.15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

Haagensen, M.

J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010).
[CrossRef] [PubMed]

Halbhuber, K. J.

B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008).
[CrossRef] [PubMed]

Han, M.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Hart, N. S.

N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol.209(23), 4776–4787 (2006).
[CrossRef] [PubMed]

Headington, K.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell imaging of the chick retina with adaptive optics,” Curr. Eye Res.36(10), 947–957 (2011).
[CrossRef] [PubMed]

Hodos, W.

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

Holz, F. G.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Howland, H. C.

F. Schaeffel and H. C. Howland, “Properties of the feedback loops controlling eye growth and refractive state in the chicken,” Vision Res.31(4), 717–734 (1991).
[CrossRef] [PubMed]

F. Schaeffel and H. C. Howland, “Visual optics in normal and ametropic chickens,” Clin. Vis. Sci.3, 83–89 (1988).

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res.28(5), 639–657 (1988).
[CrossRef] [PubMed]

Hunter, J. J.

Imanishi, Y.

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: Shedding light on the chemistry of vision,” Biochemistry46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004).
[CrossRef] [PubMed]

Irving, E. L.

M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012).
[CrossRef] [PubMed]

Johnson, H. M.

H. M. Johnson, “Visual pattern-discrimination in the vertebrate: II. Comparative visual acuity in the dog, the monkey and the chick,” J. Anim. Behav.4(5), 340–361 (1914).
[CrossRef]

Kalnins, V. I.

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

Keyser, K.

Khalaj, M.

J. R. Phillips, M. Khalaj, and N. A. McBrien, “Induced myopia associated with increased scleral creep in chick and tree shrew eyes,” Invest. Ophthalmol. Vis. Sci.41(8), 2028–2034 (2000).
[PubMed]

Kim, S. Y.

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

Kisilak, M. L.

M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012).
[CrossRef] [PubMed]

Kitaguchi, Y.

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Knowles, A.

J. K. Bowmaker and A. Knowles, “The visual pigments and oil droplets of the chicken retina,” Vision Res.17(7), 755–764 (1977).
[CrossRef] [PubMed]

Korabliona, N.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Koutalos, Y.

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: Shedding light on the chemistry of vision,” Biochemistry46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Kram, Y. A.

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Krebs, W.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

La Schiazza, O.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Larson, A. M.

J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009).
[CrossRef] [PubMed]

Laties, A. M.

X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995).
[CrossRef] [PubMed]

Li, K. Y.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Li, Y.-C.

Liang, H.

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995).
[CrossRef] [PubMed]

Lin, T.

X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995).
[CrossRef] [PubMed]

Lindenau, J.

B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008).
[CrossRef] [PubMed]

Lisney, T. J.

N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol.209(23), 4776–4787 (2006).
[CrossRef] [PubMed]

Lodowski, K. H.

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: Shedding light on the chemistry of vision,” Biochemistry46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Lu, R.-W.

Malaval, L.

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

Mancuso, J. J.

J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009).
[CrossRef] [PubMed]

Manger, P. R.

J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010).
[CrossRef] [PubMed]

Mantey, S.

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Marran, L.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

Masella, B.

McBrien, N. A.

J. R. Phillips, M. Khalaj, and N. A. McBrien, “Induced myopia associated with increased scleral creep in chick and tree shrew eyes,” Invest. Ophthalmol. Vis. Sci.41(8), 2028–2034 (2000).
[PubMed]

Merigan, W. H.

Mihashi, T.

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Moore, D.

R. Over and D. Moore, “Spatial acuity of the chicken,” Brain Res.211(2), 424–426 (1981).
[CrossRef] [PubMed]

Morris, V. B.

V. B. Morris, “Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor,” J. Comp. Neurol.140(3), 359–397 (1970).
[CrossRef] [PubMed]

Muller, F.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Nakazawa, N.

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Nickla, D.

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell imaging of the chick retina with adaptive optics,” Curr. Eye Res.36(10), 947–957 (2011).
[CrossRef] [PubMed]

Nickla, D. L.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

Niemz, M. H.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Norton, T. T.

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

Olivier La Schiazza, M.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Ondhia, N.

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

Over, R.

R. Over and D. Moore, “Spatial acuity of the chicken,” Brain Res.211(2), 424–426 (1981).
[CrossRef] [PubMed]

Palczewska, G.

Palczewski, K.

Pettigrew, J. D.

J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010).
[CrossRef] [PubMed]

C. F. Wildsoet and J. D. Pettigrew, “Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens: Evidence for local-control of eye growth,” Clin. Vis. Sci.3, 99–107 (1988).

Phillips, J. R.

J. R. Phillips, M. Khalaj, and N. A. McBrien, “Induced myopia associated with increased scleral creep in chick and tree shrew eyes,” Invest. Ophthalmol. Vis. Sci.41(8), 2028–2034 (2000).
[PubMed]

Piston, D. W.

Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004).
[CrossRef] [PubMed]

Reiner, A.

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

Ringuette, M.

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

Roorda, A.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Saggau, P.

J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009).
[CrossRef] [PubMed]

Saunders, K. J.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008).
[CrossRef] [PubMed]

Schaeffel, F.

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

E. Diedrich and F. Schaeffel, “Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro,” Vis. Neurosci.26(5-6), 467–476 (2009).
[CrossRef] [PubMed]

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res.42(21), 2409–2417 (2002).
[CrossRef] [PubMed]

M. Bartmann and F. Schaeffel, “A simple mechanism for emmetropization without cues from accommodation or colour,” Vision Res.34(7), 873–876 (1994).
[CrossRef] [PubMed]

F. Schaeffel and H. C. Howland, “Properties of the feedback loops controlling eye growth and refractive state in the chicken,” Vision Res.31(4), 717–734 (1991).
[CrossRef] [PubMed]

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res.28(5), 639–657 (1988).
[CrossRef] [PubMed]

F. Schaeffel and H. C. Howland, “Visual optics in normal and ametropic chickens,” Clin. Vis. Sci.3, 83–89 (1988).

Schmid, K. L.

K. L. Schmid and C. F. Wildsoet, “Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm,” Vision Res.38(17), 2629–2634 (1998).
[CrossRef] [PubMed]

Schmitz-Valckenberg, S.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Schwingel, M.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Seidemann, A.

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res.42(21), 2409–2417 (2002).
[CrossRef] [PubMed]

Sharma, R.

Shih, Y. F.

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

Silvestri, G.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008).
[CrossRef] [PubMed]

Sivak, J. G.

J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci.66(12), 854–858 (1989).
[CrossRef] [PubMed]

Snyder, S.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Song, H.-X.

T. Y. P. Chui, H.-X. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

Stone, R. A.

X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995).
[CrossRef] [PubMed]

Strang, C.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sun, H.

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Temple, W.

L. R. DeMello, T. M. Foster, and W. Temple, “Discriminative performance of the domestic hen in a visual acuity task,” J. Exp. Anal. Behav.58(1), 147–157 (1992).
[CrossRef] [PubMed]

Thibos, L. N.

T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005).
[CrossRef] [PubMed]

Tiruveedhula, P.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Trachtman, J.

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

Troilo, D.

D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996).
[CrossRef] [PubMed]

D. Troilo and J. Wallman, “The regulation of eye growth and refractive state: an experimental study of emmetropization,” Vision Res.31(7-8), 1237–1250 (1991).
[CrossRef] [PubMed]

Turkel, J.

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

Vidgen, D.

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

Von Pape, U.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Wallman, J.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

D. Troilo and J. Wallman, “The regulation of eye growth and refractive state: an experimental study of emmetropization,” Vision Res.31(7-8), 1237–1250 (1991).
[CrossRef] [PubMed]

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

Wang, B. G.

B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008).
[CrossRef] [PubMed]

Watson, T.

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weerheim, J. A.

J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci.66(12), 854–858 (1989).
[CrossRef] [PubMed]

Wensel, T. G.

J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009).
[CrossRef] [PubMed]

Wildsoet, C.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

Wildsoet, C. F.

K. L. Schmid and C. F. Wildsoet, “Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm,” Vision Res.38(17), 2629–2634 (1998).
[CrossRef] [PubMed]

C. F. Wildsoet and J. D. Pettigrew, “Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens: Evidence for local-control of eye growth,” Clin. Vis. Sci.3, 99–107 (1988).

Williams, D. R.

Wolsley, C. J.

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008).
[CrossRef] [PubMed]

Xiong, M.

D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996).
[CrossRef] [PubMed]

Xu, A.

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

Yamaguchi, T.

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Yao, X.-C.

Yap, M.

Y. Chui, M. Yap, and H. Chan, “The retinal ganglion cell density and nerve fiber layer thickness in the human myopic eye,” Invest. Ophthalmol. Vis. Sci.43, 183 E-Abstract (2002).

Yap, M. K.

T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005).
[CrossRef] [PubMed]

Ye, T.

Yin, L.

Yu, J. Y.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

Zhang, H.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Zhu, X.

X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995).
[CrossRef] [PubMed]

Biochemistry (1)

Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: Shedding light on the chemistry of vision,” Biochemistry46(34), 9674–9684 (2007).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

Brain Behav. Evol. (1)

J. D. Pettigrew, A. Bhagwandin, M. Haagensen, and P. R. Manger, “Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (Loxodonta africana),” Brain Behav. Evol.75(4), 251–261 (2010).
[CrossRef] [PubMed]

Brain Res. (1)

R. Over and D. Moore, “Spatial acuity of the chicken,” Brain Res.211(2), 424–426 (1981).
[CrossRef] [PubMed]

Clin. Vis. Sci. (2)

F. Schaeffel and H. C. Howland, “Visual optics in normal and ametropic chickens,” Clin. Vis. Sci.3, 83–89 (1988).

C. F. Wildsoet and J. D. Pettigrew, “Experimental myopia and anomalous eye growth-patterns unaffected by optic-nerve section in chickens: Evidence for local-control of eye growth,” Clin. Vis. Sci.3, 99–107 (1988).

Curr. Eye Res. (2)

Y. F. Shih, M. E. Fitzgerald, T. T. Norton, P. D. Gamlin, W. Hodos, and A. Reiner, “Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia,” Curr. Eye Res.12(3), 219–227 (1993).
[CrossRef] [PubMed]

K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell imaging of the chick retina with adaptive optics,” Curr. Eye Res.36(10), 947–957 (2011).
[CrossRef] [PubMed]

Exp. Eye Res. (2)

S. Y. Kim, N. Ondhia, D. Vidgen, L. Malaval, M. Ringuette, and V. I. Kalnins, “Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina,” Exp. Eye Res.65(5), 681–689 (1997).
[CrossRef] [PubMed]

X. Zhu, T. Lin, R. A. Stone, and A. M. Laties, “Sex differences in chick eye growth and experimental myopia,” Exp. Eye Res.61(2), 173–179 (1995).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

J. R. Phillips, M. Khalaj, and N. A. McBrien, “Induced myopia associated with increased scleral creep in chick and tree shrew eyes,” Invest. Ophthalmol. Vis. Sci.41(8), 2028–2034 (2000).
[PubMed]

Y. Chui, M. Yap, and H. Chan, “The retinal ganglion cell density and nerve fiber layer thickness in the human myopic eye,” Invest. Ophthalmol. Vis. Sci.43, 183 E-Abstract (2002).

T. Y. P. Chui, H.-X. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

J. Anim. Behav. (1)

H. M. Johnson, “Visual pattern-discrimination in the vertebrate: II. Comparative visual acuity in the dog, the monkey and the chick,” J. Anim. Behav.4(5), 340–361 (1914).
[CrossRef]

J. Biomed. Opt. (5)

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized non-linear microscopy of ex vivo human retinas,” J. Biomed. Opt.15(2), 026007 (2010).
[CrossRef] [PubMed]

M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt.11(1), 010501 (2006).

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

J. Cell Biol. (1)

Y. Imanishi, M. L. Batten, D. W. Piston, W. Baehr, and K. Palczewski, “Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye,” J. Cell Biol.164(3), 373–383 (2004).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

V. B. Morris, “Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor,” J. Comp. Neurol.140(3), 359–397 (1970).
[CrossRef] [PubMed]

J. Exp. Anal. Behav. (1)

L. R. DeMello, T. M. Foster, and W. Temple, “Discriminative performance of the domestic hen in a visual acuity task,” J. Exp. Anal. Behav.58(1), 147–157 (1992).
[CrossRef] [PubMed]

J. Exp. Biol. (1)

N. S. Hart, T. J. Lisney, and S. P. Collin, “Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity,” J. Exp. Biol.209(23), 4776–4787 (2006).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korabliona, U. Von Pape, M. Olivier La Schiazza, M. Schwingel, H. Zhang, and F. Muller, “Compact adaptive optics system for multiphoton fundus imaging,” J. Mod. Opt.55(4–5), 749–758 (2008).

Jpn. J. Ophthalmol. (1)

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, and T. Fujikado, “In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera,” Jpn. J. Ophthalmol.51(6), 456–461 (2007).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

B. G. Wang, A. Eitner, J. Lindenau, and K. J. Halbhuber, “High-resolution two-photon excitation microscopy of ocular tissues in porcine eye,” Lasers Surg. Med.40(4), 247–256 (2008).
[CrossRef] [PubMed]

Optom. Vis. Sci. (2)

M. L. Kisilak, K. Bunghardt, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “Longitudinal in vivo imaging of cones in the alert chicken,” Optom. Vis. Sci.89(5), 644–651 (2012).
[CrossRef] [PubMed]

J. G. Sivak, D. L. Barrie, and J. A. Weerheim, “Bilateral experimental myopia in chicks,” Optom. Vis. Sci.66(12), 854–858 (1989).
[CrossRef] [PubMed]

PLoS ONE (1)

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Retina (1)

H. E. Grossniklaus and W. R. Green, “Pathologic findings in pathologic myopia,” Retina12(2), 127–133 (1992).
[CrossRef] [PubMed]

Science (2)

J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science201(4362), 1249–1251 (1978).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Vis. Neurosci. (2)

D. Troilo, M. Xiong, J. C. Crowley, and B. L. Finlay, “Factors controlling the dendritic arborization of retinal ganglion cells,” Vis. Neurosci.13(4), 721–733 (1996).
[CrossRef] [PubMed]

E. Diedrich and F. Schaeffel, “Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro,” Vis. Neurosci.26(5-6), 467–476 (2009).
[CrossRef] [PubMed]

Vision Res. (12)

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

T. Y. Chui, M. K. Yap, H. H. Chan, and L. N. Thibos, “Retinal stretching limits peripheral visual acuity in myopia,” Vision Res.45(5), 593–605 (2005).
[CrossRef] [PubMed]

K. L. Schmid and C. F. Wildsoet, “Assessment of visual acuity and contrast sensitivity in the chick using an optokinetic nystagmus paradigm,” Vision Res.38(17), 2629–2634 (1998).
[CrossRef] [PubMed]

J. K. Bowmaker and A. Knowles, “The visual pigments and oil droplets of the chicken retina,” Vision Res.17(7), 755–764 (1977).
[CrossRef] [PubMed]

C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and peripheral resolution acuity,” Vision Res.48(14), 1554–1561 (2008).
[CrossRef] [PubMed]

F. Schaeffel and H. C. Howland, “Properties of the feedback loops controlling eye growth and refractive state in the chicken,” Vision Res.31(4), 717–734 (1991).
[CrossRef] [PubMed]

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res.42(21), 2409–2417 (2002).
[CrossRef] [PubMed]

M. Bartmann and F. Schaeffel, “A simple mechanism for emmetropization without cues from accommodation or colour,” Vision Res.34(7), 873–876 (1994).
[CrossRef] [PubMed]

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res.28(5), 639–657 (1988).
[CrossRef] [PubMed]

D. Troilo and J. Wallman, “The regulation of eye growth and refractive state: an experimental study of emmetropization,” Vision Res.31(7-8), 1237–1250 (1991).
[CrossRef] [PubMed]

J. Wallman, C. Wildsoet, A. Xu, M. D. Gottlieb, D. L. Nickla, L. Marran, W. Krebs, and A. M. Christensen, “Moving the retina: choroidal modulation of refractive state,” Vision Res.35(1), 37–50 (1995).
[CrossRef] [PubMed]

H. Liang, D. P. Crewther, S. G. Crewther, and A. M. Barila, “A role for photoreceptor outer segments in the induction of deprivation myopia,” Vision Res.35(9), 1217–1225 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the AO multiphoton microscope. PMT, photomultiplier.

Fig. 2
Fig. 2

Example of the procedure steps. (a) TPEF image of GCs; (b) image after different filtering, thresholding and binarization; (c) watershed segmentation; (d) final histogram for GC counting and area computation.

Fig. 3
Fig. 3

TPEF images of PR layer for control (a) and myopic (b) chicken retinas at the same retinal eccentricity. Sets of PR images for various retinal eccentricities previously reported by these authors can be seen in [16]. Scale bar: 50 microns.

Fig. 4
Fig. 4

(a) Decrease in PR density (cells/mm2) with retinal eccentricity for myopic (red symbols) and control (blue symbols) eyes. Linear regressions fitted to the data demonstrate a significant decrease in PR density with retinal eccentricity. (b) Averaged PR density values as a function of the retinal eccentricity grouped in intervals of 20 degrees.

Fig. 5
Fig. 5

(a) Increase in PR inter-distance with retinal eccentricity. (b) PR inter-distance (microns) versus PR density (cells/mm2). Myopic and control eyes are represented by red and blue symbols respectively. Linear regressions fitted to the data demonstrate a significant increase in (a) and a significant decrease in (b) for both sets of retinas.

Fig. 6
Fig. 6

TPEF images of GCs for control (a, c) and myopic (b, d) eyes. Images correspond to different retinal eccentricities, ~15° (a, b) and ~85° (c, d). Scale bar: 50 microns.

Fig. 7
Fig. 7

Change in GC density (cells/mm2) as a function of the retinal eccentricity grouped in intervals of 20 degrees, for myopic (red symbols) and control (blue symbols) retinas.

Fig. 8
Fig. 8

Averaged GC area values (microns2) for different retinal eccentricies. Red symbols, myopic; blue symbols, control. Lines correspond to the best linear fits.

Fig. 9
Fig. 9

Significant linear increase of GC inter-distance (microns) with retinal eccentricity. Myopic eyes (red dots): R = 0.77, p = 0.015; control eyes (blue dots): R = 0.80, p = 0.0001.

Fig. 10
Fig. 10

Values of calculated GC visual resolution (c/deg) in the chick retina as a function of retinal eccentricity computed using Eq. (1). Labels are the same as in previous figures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

VR= π 180 PND 2 D GC ,

Metrics