Abstract

A new hybrid material consisting of nanodiamonds (NDs) and silk has been synthesized and investigated. NDs can contain bright fluorescence centers, important for bioprobes to image biological structures at the nanoscale and silk provides a transparent, robust matrix for these nanoparticles in-vivo or in-vitro. The ND-silk hybrid films were determined to be highly transparent in the visible to near infrared wavelength range. The NDs embedded in silk exhibited significant enhancement of emission relative to air, correlating with theoretical predictions. Furthermore, animal toxicity tests confirmed ND-silk films to be non-toxic in an in-vivo mice model.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ho, Nanodiamonds applications in biology and nanoscale medicine (Springer Link, New York, USA, 2010), Chap. 6.
  2. X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).
  3. E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
    [CrossRef] [PubMed]
  4. J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
    [CrossRef] [PubMed]
  5. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol.7(1), 11–23 (2011).
    [CrossRef] [PubMed]
  6. A. S. Barnard, “Diamond standard in diagnostics: nanodiamond biolabels make their mark,” Analyst (Lond.)134(9), 1751–1764 (2009).
    [CrossRef] [PubMed]
  7. P. Alivisatos, “The Use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
    [CrossRef] [PubMed]
  8. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett.4(1), 11–18 (2004).
    [CrossRef]
  9. A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
    [CrossRef] [PubMed]
  10. Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, “Nanodiamonds for optical bioimaging,” J. Phys. D Appl. Phys.43(37), 374021 (2010).
    [CrossRef]
  11. R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
    [CrossRef] [PubMed]
  12. M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
    [CrossRef]
  13. H. B. Man and D. Ho, “Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing,” Phys. Status Solidi A.209(9), 1609–1618 (2012).
    [CrossRef]
  14. R. V. Lewis, “Spider silk: ancient ideas for new biomaterials,” Chem. Rev.106(9), 3762–3774 (2006).
    [CrossRef] [PubMed]
  15. D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
    [CrossRef]
  16. C. Vepari and D. L. Kaplan, “Silk as a Biomaterial,” Prog. Polym. Sci.32(8-9), 991–1007 (2007).
    [CrossRef] [PubMed]
  17. S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
    [CrossRef]
  18. A. B. Mathur and V. Gupta, “Silk fibroin-derived nanoparticles for biomedical applications,” Nanomedicine (Lond)5(5), 807–820 (2010).
    [CrossRef] [PubMed]
  19. E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
    [CrossRef] [PubMed]
  20. K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
    [CrossRef]
  21. E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
    [CrossRef] [PubMed]
  22. E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express17(14), 11287–11293 (2009).
    [CrossRef] [PubMed]
  23. R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956).
    [CrossRef]
  24. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
    [CrossRef]
  25. P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
    [CrossRef] [PubMed]
  26. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
    [CrossRef]
  27. F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
    [CrossRef]
  28. W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20(2), 195–199 (1977).
    [CrossRef]
  29. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A38(7), 3410–3416 (1988).
    [CrossRef] [PubMed]
  30. W. Lukosz and R. E. Kunz, “Light-emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67(12), 1607–1615 (1977).
    [CrossRef]
  31. W. Lucosz and R. E. Kunz, “Light-emission by magnetic and electric dipoles close to a plane interface II Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am.67(12), 1615–1619 (1977).
    [CrossRef]
  32. L. Novotny and B. Hercht, Principles of Nano-Optics (Cambridge University press, Cambridge, UK, 2006), Chap. 10.
  33. H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials-a road to sustainable high technology,” Adv. Mater.24(21), 2824–2837 (2012).
    [CrossRef] [PubMed]
  34. B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
    [CrossRef] [PubMed]

2013

E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
[CrossRef] [PubMed]

2012

X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

H. B. Man and D. Ho, “Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing,” Phys. Status Solidi A.209(9), 1609–1618 (2012).
[CrossRef]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials-a road to sustainable high technology,” Adv. Mater.24(21), 2824–2837 (2012).
[CrossRef] [PubMed]

2011

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol.7(1), 11–23 (2011).
[CrossRef] [PubMed]

2010

Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, “Nanodiamonds for optical bioimaging,” J. Phys. D Appl. Phys.43(37), 374021 (2010).
[CrossRef]

A. B. Mathur and V. Gupta, “Silk fibroin-derived nanoparticles for biomedical applications,” Nanomedicine (Lond)5(5), 807–820 (2010).
[CrossRef] [PubMed]

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
[CrossRef]

2009

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

A. S. Barnard, “Diamond standard in diagnostics: nanodiamond biolabels make their mark,” Analyst (Lond.)134(9), 1751–1764 (2009).
[CrossRef] [PubMed]

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
[CrossRef] [PubMed]

E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express17(14), 11287–11293 (2009).
[CrossRef] [PubMed]

2008

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

2007

C. Vepari and D. L. Kaplan, “Silk as a Biomaterial,” Prog. Polym. Sci.32(8-9), 991–1007 (2007).
[CrossRef] [PubMed]

2006

R. V. Lewis, “Spider silk: ancient ideas for new biomaterials,” Chem. Rev.106(9), 3762–3774 (2006).
[CrossRef] [PubMed]

2004

P. Alivisatos, “The Use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
[CrossRef] [PubMed]

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett.4(1), 11–18 (2004).
[CrossRef]

2001

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

1988

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A38(7), 3410–3416 (1988).
[CrossRef] [PubMed]

1977

1956

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956).
[CrossRef]

Acosta, V. M.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Alivisatos, P.

P. Alivisatos, “The Use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
[CrossRef] [PubMed]

Ampem-Lassen, E.

Amsden, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

Amsden, J. J.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
[CrossRef] [PubMed]

Balasubramanian, G.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Barnard, A. S.

A. S. Barnard, “Diamond standard in diagnostics: nanodiamond biolabels make their mark,” Analyst (Lond.)134(9), 1751–1764 (2009).
[CrossRef] [PubMed]

Beausoleil, R. G.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Bhatia, S. N.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett.4(1), 11–18 (2004).
[CrossRef]

Bradac, C.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Bressner, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Brown, R. H.

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956).
[CrossRef]

Chan, W. C. W.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett.4(1), 11–18 (2004).
[CrossRef]

Chang, H.-C.

Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, “Nanodiamonds for optical bioimaging,” J. Phys. D Appl. Phys.43(37), 374021 (2010).
[CrossRef]

Chen, M.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
[CrossRef]

Cheng, C.-L.

Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, “Nanodiamonds for optical bioimaging,” J. Phys. D Appl. Phys.43(37), 374021 (2010).
[CrossRef]

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A38(7), 3410–3416 (1988).
[CrossRef] [PubMed]

Chow, E. K.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
[CrossRef]

Cronin-Golomb, M.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Dawes, J. M.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Derfus, A. M.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett.4(1), 11–18 (2004).
[CrossRef]

Domachuk, P.

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
[CrossRef] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

Fu, K.-M.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Gaebel, T.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Ganesan, K.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express17(14), 11287–11293 (2009).
[CrossRef] [PubMed]

Georgakoudi, I.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Gibson, B. C.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express17(14), 11287–11293 (2009).
[CrossRef] [PubMed]

Goga, A.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

Gogotsi, Y.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol.7(1), 11–23 (2011).
[CrossRef] [PubMed]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Greentree, A. D.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Gupta, V.

A. B. Mathur and V. Gupta, “Silk fibroin-derived nanoparticles for biomedical applications,” Nanomedicine (Lond)5(5), 807–820 (2010).
[CrossRef] [PubMed]

Hemmer, P. R.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Ho, D.

H. B. Man and D. Ho, “Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing,” Phys. Status Solidi A.209(9), 1609–1618 (2012).
[CrossRef]

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol.7(1), 11–23 (2011).
[CrossRef] [PubMed]

M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
[CrossRef]

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Hollenberg, L. C. L.

Hossain, F. M.

Hu, W.

X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).

Huang, H.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Huang, Z.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Hui, Y. Y.

Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, “Nanodiamonds for optical bioimaging,” J. Phys. D Appl. Phys.43(37), 374021 (2010).
[CrossRef]

Huntington, S. T.

Inam, F. A.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Jelezko, F.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Kaplan, D. L.

E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
[CrossRef] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials-a road to sustainable high technology,” Adv. Mater.24(21), 2824–2837 (2012).
[CrossRef] [PubMed]

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
[CrossRef] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

C. Vepari and D. L. Kaplan, “Silk as a Biomaterial,” Prog. Polym. Sci.32(8-9), 991–1007 (2007).
[CrossRef] [PubMed]

Karle, T. J.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Kharlampieva, E.

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Kim, D.-H.

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

Kim, Y.-S.

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

Kozlovskaya, V.

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Kunz, R. E.

Lam, H. B. R.

M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
[CrossRef]

Lam, R.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Lämmle, A.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Lawrence, B. D.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Lewis, J. A.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

Lewis, R. V.

R. V. Lewis, “Spider silk: ancient ideas for new biomaterials,” Chem. Rev.106(9), 3762–3774 (2006).
[CrossRef] [PubMed]

Li, J.

X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).

Lu, S.

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Lucosz, W.

Lukosz, W.

W. Lukosz and R. E. Kunz, “Light-emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67(12), 1607–1615 (1977).
[CrossRef]

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20(2), 195–199 (1977).
[CrossRef]

Man, H. B.

H. B. Man and D. Ho, “Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing,” Phys. Status Solidi A.209(9), 1609–1618 (2012).
[CrossRef]

Mathur, A. B.

A. B. Mathur and V. Gupta, “Silk fibroin-derived nanoparticles for biomedical applications,” Nanomedicine (Lond)5(5), 807–820 (2010).
[CrossRef] [PubMed]

McGuinness, L. P.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Mochalin, V. N.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol.7(1), 11–23 (2011).
[CrossRef] [PubMed]

Murphy, A. R.

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

Naik, R. R.

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Omenetto, F. G.

E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
[CrossRef] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials-a road to sustainable high technology,” Adv. Mater.24(21), 2824–2837 (2012).
[CrossRef] [PubMed]

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
[CrossRef] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

Osawa, E.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Panilaitis, B.

E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
[CrossRef] [PubMed]

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

Parker, S. T.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

Perry, H.

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
[CrossRef] [PubMed]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Prawer, S.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express17(14), 11287–11293 (2009).
[CrossRef] [PubMed]

Pritchard, E. M.

E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
[CrossRef] [PubMed]

Rabeau, J. R.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Reinhard, F.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Reuter, R.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Robinson, E.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Rogers, J. A.

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

Santori, C. C.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Schaffer, D.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

Shenderova, O.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol.7(1), 11–23 (2011).
[CrossRef] [PubMed]

Shevchenko, V. V.

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Shimkunas, R. A.

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Simpson, D. A.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express17(14), 11287–11293 (2009).
[CrossRef] [PubMed]

Stacey, A.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Steel, M. J.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Stewart, L.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Tao, H.

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials-a road to sustainable high technology,” Adv. Mater.24(21), 2824–2837 (2012).
[CrossRef] [PubMed]

Tao, L.

X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).

Tilburey, G. E.

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

Tisler, J.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Tomljenovic-Hanic, S.

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

Trpkovski, S.

Tsioris, K.

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

Tsukruk, V. V.

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Twiss, R. Q.

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956).
[CrossRef]

Vaia, R.

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Valentin, T.

E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
[CrossRef] [PubMed]

Vepari, C.

C. Vepari and D. L. Kaplan, “Silk as a Biomaterial,” Prog. Polym. Sci.32(8-9), 991–1007 (2007).
[CrossRef] [PubMed]

Wallet, B.

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Wei, Y. A.

X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).

Withford, M. J.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Wrachtrup, J.

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

Xu, X.

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Zakin, M. R.

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

Zhang, X.

X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).

Zhang, X. Q.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

Zhang, X.-Q.

M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
[CrossRef]

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

ACS Nano

J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, and J. Wrachtrup, “Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule,” ACS Nano5(10), 7893–7898 (2011).
[CrossRef] [PubMed]

E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, and V. V. Tsukruk, “Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites,” ACS Nano4(12), 7053–7063 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater.

K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, “Functionalized-silk-based active optofluidic devices,” Adv. Funct. Mater.20(7), 1083–1089 (2010).
[CrossRef]

E. M. Pritchard, T. Valentin, B. Panilaitis, F. G. Omenetto, and D. L. Kaplan, “Antibiotic-releasing silk biomaterials for infection prevention and treatment,” Adv. Funct. Mater.23(7), 854–861 (2013).
[CrossRef] [PubMed]

Adv. Mater.

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials-a road to sustainable high technology,” Adv. Mater.24(21), 2824–2837 (2012).
[CrossRef] [PubMed]

A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K.-M. Fu, C. C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Near-surface spectrally stable nitrogen vacancy centers engineered in single crystal diamond,” Adv. Mater.24(25), 3333–3338 (2012).
[CrossRef] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk printed optical waveguides,” Adv. Mater.21(23), 2411–2415 (2009).
[CrossRef]

Analyst (Lond.)

A. S. Barnard, “Diamond standard in diagnostics: nanodiamond biolabels make their mark,” Analyst (Lond.)134(9), 1751–1764 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, and J. A. Rogers, “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Appl. Phys. Lett.95(13), 133701 (2009).
[CrossRef]

P. Domachuk, H. Perry, J. J. Amsden, D. L. Kaplan, and F. G. Omenetto, “Bioactive “self-sensing” optical systems,” Appl. Phys. Lett.95(25), 253702 (2009).
[CrossRef] [PubMed]

Biomacromolecules

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules9(4), 1214–1220 (2008).
[CrossRef] [PubMed]

Biomaterials

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, and D. Ho, “Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles,” Biomaterials30(29), 5720–5728 (2009).
[CrossRef] [PubMed]

Chem. Rev.

R. V. Lewis, “Spider silk: ancient ideas for new biomaterials,” Chem. Rev.106(9), 3762–3774 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Phys. Chem. Lett.

M. Chen, X.-Q. Zhang, H. B. R. Lam, E. K. Chow, and D. Ho, “Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery,” J. Phys. Chem. Lett.1(21), 3167–3171 (2010).
[CrossRef]

J. Phys. D Appl. Phys.

Y. Y. Hui, C.-L. Cheng, and H.-C. Chang, “Nanodiamonds for optical bioimaging,” J. Phys. D Appl. Phys.43(37), 374021 (2010).
[CrossRef]

Nano Lett.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett.4(1), 11–18 (2004).
[CrossRef]

Nanomedicine (Lond)

A. B. Mathur and V. Gupta, “Silk fibroin-derived nanoparticles for biomedical applications,” Nanomedicine (Lond)5(5), 807–820 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol.

P. Alivisatos, “The Use of nanocrystals in biological detection,” Nat. Biotechnol.22(1), 47–52 (2004).
[CrossRef] [PubMed]

Nat. Nanotechnol.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol.7(1), 11–23 (2011).
[CrossRef] [PubMed]

Nat. Photonics

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

Nature

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature177(4497), 27–29 (1956).
[CrossRef]

New J. Phys.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centers on a structured surface,” New J. Phys.13(7), 073012 (2011).
[CrossRef]

Opt. Commun.

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20(2), 195–199 (1977).
[CrossRef]

Opt. Express

Phys. Rev. A

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A38(7), 3410–3416 (1988).
[CrossRef] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A64(6), 061802 (2001).
[CrossRef]

Phys. Status Solidi A.

H. B. Man and D. Ho, “Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing,” Phys. Status Solidi A.209(9), 1609–1618 (2012).
[CrossRef]

Prog. Polym. Sci.

C. Vepari and D. L. Kaplan, “Silk as a Biomaterial,” Prog. Polym. Sci.32(8-9), 991–1007 (2007).
[CrossRef] [PubMed]

Sci. Transl. Med.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011).
[CrossRef] [PubMed]

Toxicol. Rev.

X. Zhang, W. Hu, J. Li, L. Tao, and Y. A. Wei, “Comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide and nanodiamond,” Toxicol. Rev.1, 62–68 (2012).

Other

D. Ho, Nanodiamonds applications in biology and nanoscale medicine (Springer Link, New York, USA, 2010), Chap. 6.

L. Novotny and B. Hercht, Principles of Nano-Optics (Cambridge University press, Cambridge, UK, 2006), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic representation of a silk-coated ND (on silicon substrate) fluorescing in red (a characteristic of NV- center), when pumped with a green laser (532 nm). The crystallographic model of the NV- center in diamond is shown in the inset, consisting of a substitutional nitrogen atom adjacent to a vacancy [9]. Scanning electron microscopy (SEM) image of the marked silicon substrate used to identify the NDs after silk coating is shown to the right. (b) Emission spectrum of a single NV- center in ND (blue) at room temperature with a visible zero phonon line at 637 nm and transmission spectrum of silk (black) showing a high (≈90%) transmission in the wavelength range of interest. The scale on left shows the intensity of the spectrum in arbitrary units, while that on right shows the transmission percentage.

Fig. 2
Fig. 2

Transmission spectra of silk without (black line) and with NDs (blue line). Inset shows the free standing silk only (left) and NDs mixed with silk (right) film.

Fig. 3
Fig. 3

(a) Scanning confocal fluorescence map of a 5 µm × 5 µm region of the sample before coating with silk. The cross hair specifies a ND containing a single defect center. (b) Photon antibunching plot for the center identified in (a). Black curve is a single exponential fit of the antibunching data [24].

Fig. 4
Fig. 4

Background subtracted emission from the NVcenter (blue trace) showing an approximately 2 fold increase in counts after being embedded in silk (red trace). The black lines represent the average counts for the corresponding count rates.

Fig. 5
Fig. 5

(a) Scanning confocal fluorescence map of a 5 µm × 5 µm region of the sample after coating with silk. The cross hair specifies the same defect center as shown in Fig. 3. (b) Photon antibunching plot for the center identified in (a). The black curve indicates a double exponential fit of the antibunching data [24].

Fig. 6
Fig. 6

(a) A schematic of the silk-coated-NDs on the silicon substrate. (b) Radiating NV- dipole encapsulated in ND, embedded in medium 1 (air/ silk) and lying close to the silicon interface medium 2 (silicon). Interference between the emitted plane wave 1 and the partly reflected wave 2’ is shown, which in addition to the reflected evanescent wave contributes to the radiated power.

Fig. 7
Fig. 7

Emission rate ratio of ND encapsulated NV- centers covered in silk, relative to air (both on silicon substrate) for orthogonal (solid line) and parallel (dash-dotted) dipole polarizations.

Fig. 8
Fig. 8

Animal toxicity test of ND-silk films. Introducing (a) fully and (b) partially annealed films into the animal tissue. Degradation ability and non-inflammatory response of the (c) fully and (d) partially annealed films after two weeks of implantation. (e) A histological image of the examined tissue after implantation, showing no significant adverse effects in the subcutaneous adipose tissue surrounding the ND-silk implant.

Tables (1)

Tables Icon

Table 1 : Comparison of emission rates from NV- single centers before and after silk coating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

e = R silk R air

Metrics