Abstract

Functional near-infrared spectroscopy (fNIRS) was used to investigate resting state connectivity of language areas including bilateral inferior frontal gyrus (IFG) and superior temporal gyrus (STG). Thirty-two subjects participated in the experiment, including twenty adults and twelve children. Spontaneous hemodynamic fluctuations were recorded, and then intra- and inter-hemispheric temporal correlations of these signals were computed. The correlations of all hemoglobin components were observed significantly higher for adults than children. Moreover, the differences for the STG were more significant than for the IFG. In the adult group, differences in the correlations between males and females were not significant. Our results suggest by measuring resting state intra- and inter-hemispheric correlations, fNIRS is able to provide qualitative and quantitative evaluation on the functioning of the cortical network.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
    [CrossRef] [PubMed]
  2. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
    [CrossRef] [PubMed]
  3. G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychon. Bull. Rev.5(4), 535–563 (1998).
    [CrossRef]
  4. M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
    [CrossRef] [PubMed]
  5. Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
    [CrossRef] [PubMed]
  6. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
    [CrossRef] [PubMed]
  7. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
    [CrossRef] [PubMed]
  8. T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
    [CrossRef] [PubMed]
  9. V. Quaresima, S. Bisconti, and M. Ferrari, “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang.121(2), 79–89 (2012).
    [CrossRef] [PubMed]
  10. P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).
  11. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995).
    [CrossRef] [PubMed]
  12. M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003).
    [CrossRef] [PubMed]
  13. H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010).
    [CrossRef] [PubMed]
  14. D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
    [CrossRef] [PubMed]
  15. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
    [CrossRef] [PubMed]
  16. C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
    [CrossRef] [PubMed]
  17. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
    [CrossRef] [PubMed]
  18. H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
    [CrossRef] [PubMed]
  19. L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study,” Neuroimage60(4), 2008–2018 (2012).
    [CrossRef] [PubMed]
  20. F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
    [CrossRef] [PubMed]
  21. P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
    [CrossRef] [PubMed]
  22. N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
    [CrossRef] [PubMed]
  23. M. A. Gernsbacher and M. P. Kaschak, “Neuroimaging Studies of Language Production and Comprehension,” Annu. Rev. Psychol.54(1), 91–114 (2003).
    [CrossRef] [PubMed]
  24. R. C. Martin, “Language Processing: Functional Organization and Neuroanatomical Basis,” Annu. Rev. Psychol.54(1), 55–89 (2003).
    [CrossRef] [PubMed]
  25. I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
    [CrossRef] [PubMed]
  26. I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004).
    [CrossRef] [PubMed]
  27. M. Wallentin, “Putative sex differences in verbal abilities and language cortex: a critical review,” Brain Lang.108(3), 175–183 (2009).
    [CrossRef] [PubMed]
  28. A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Netw.13(4-5), 411–430 (2000).
    [CrossRef] [PubMed]
  29. J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
    [CrossRef] [PubMed]
  30. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
    [CrossRef] [PubMed]
  31. L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
    [CrossRef] [PubMed]
  32. L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
    [CrossRef] [PubMed]
  33. L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
    [CrossRef] [PubMed]
  34. A. D. Friederici, J. Brauer, and G. Lohmann, “Maturation of the language network: from inter- to intrahemispheric connectivities,” PLoS ONE6(6), e20726 (2011).
    [CrossRef] [PubMed]

2014 (1)

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

2012 (3)

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study,” Neuroimage60(4), 2008–2018 (2012).
[CrossRef] [PubMed]

V. Quaresima, S. Bisconti, and M. Ferrari, “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang.121(2), 79–89 (2012).
[CrossRef] [PubMed]

2011 (5)

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

A. D. Friederici, J. Brauer, and G. Lohmann, “Maturation of the language network: from inter- to intrahemispheric connectivities,” PLoS ONE6(6), e20726 (2011).
[CrossRef] [PubMed]

2010 (4)

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010).
[CrossRef] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
[CrossRef] [PubMed]

2009 (4)

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).

M. Wallentin, “Putative sex differences in verbal abilities and language cortex: a critical review,” Brain Lang.108(3), 175–183 (2009).
[CrossRef] [PubMed]

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
[CrossRef] [PubMed]

2008 (1)

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

2007 (2)

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

2004 (2)

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
[CrossRef] [PubMed]

I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004).
[CrossRef] [PubMed]

2003 (4)

M. A. Gernsbacher and M. P. Kaschak, “Neuroimaging Studies of Language Production and Comprehension,” Annu. Rev. Psychol.54(1), 91–114 (2003).
[CrossRef] [PubMed]

R. C. Martin, “Language Processing: Functional Organization and Neuroanatomical Basis,” Annu. Rev. Psychol.54(1), 55–89 (2003).
[CrossRef] [PubMed]

Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
[CrossRef] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

2000 (1)

A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Netw.13(4-5), 411–430 (2000).
[CrossRef] [PubMed]

1999 (1)

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

1998 (1)

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychon. Bull. Rev.5(4), 535–563 (1998).
[CrossRef]

1997 (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

1995 (1)

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995).
[CrossRef] [PubMed]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Aleman, A.

I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004).
[CrossRef] [PubMed]

Atsumori, H.

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

Bandettini, P. A.

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
[CrossRef] [PubMed]

Barch, D. M.

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Behrmann, M.

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

Bellgowan, P. S. F.

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Binder, J. R.

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Birn, R. M.

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
[CrossRef] [PubMed]

Bisconti, S.

V. Quaresima, S. Bisconti, and M. Ferrari, “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang.121(2), 79–89 (2012).
[CrossRef] [PubMed]

Biswal, B.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995).
[CrossRef] [PubMed]

Biswal, B. B.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

Boas, D. A.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
[CrossRef] [PubMed]

Bouma, A.

I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004).
[CrossRef] [PubMed]

Brauer, J.

A. D. Friederici, J. Brauer, and G. Lohmann, “Maturation of the language network: from inter- to intrahemispheric connectivities,” PLoS ONE6(6), e20726 (2011).
[CrossRef] [PubMed]

Cammoun, L.

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

Chance, B.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

Chen, J. J.

P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).

Choi, J. H.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Church, J. A.

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Clarke, S.

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

Cohen, A. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Cooper, R. J.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

Courchesne, E.

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

Cox, R. W.

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Culver, J. P.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

Dinstein, I.

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

Dosenbach, N. U.

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Dronkers, N. F.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
[CrossRef] [PubMed]

Duan, L.

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study,” Neuroimage60(4), 2008–2018 (2012).
[CrossRef] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

Eyler, L.

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

Fabiani, M.

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychon. Bull. Rev.5(4), 535–563 (1998).
[CrossRef]

Fair, D. A.

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Ferrari, M.

V. Quaresima, S. Bisconti, and M. Ferrari, “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang.121(2), 79–89 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Fonteijn, H. M.

H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010).
[CrossRef] [PubMed]

Franceschini, M. A.

Friederici, A. D.

A. D. Friederici, J. Brauer, and G. Lohmann, “Maturation of the language network: from inter- to intrahemispheric connectivities,” PLoS ONE6(6), e20726 (2011).
[CrossRef] [PubMed]

Frost, J. A.

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Funane, T.

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

Gagnon, L.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

Gernsbacher, M. A.

M. A. Gernsbacher and M. P. Kaschak, “Neuroimaging Studies of Language Production and Comprehension,” Annu. Rev. Psychol.54(1), 91–114 (2003).
[CrossRef] [PubMed]

Go, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

Goldenholz, D.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

Gratton, E.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Gratton, G.

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychon. Bull. Rev.5(4), 535–563 (1998).
[CrossRef]

Greicius, M. D.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003).
[CrossRef] [PubMed]

Greve, D. N.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

Gupta, R.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Hagmann, P.

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

Hagoort, P.

H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010).
[CrossRef] [PubMed]

Hammeke, T. A.

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Handwerker, D. A.

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
[CrossRef] [PubMed]

Haughton, V. M.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995).
[CrossRef] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

Homae, F.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
[CrossRef] [PubMed]

Hyde, J. S.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995).
[CrossRef] [PubMed]

Hyvärinen, A.

A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Netw.13(4-5), 411–430 (2000).
[CrossRef] [PubMed]

Jaeger, J. J.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
[CrossRef] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Jones, T. B.

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
[CrossRef] [PubMed]

Kahn, R. S.

I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004).
[CrossRef] [PubMed]

Kaschak, M. P.

M. A. Gernsbacher and M. P. Kaschak, “Neuroimaging Studies of Language Production and Comprehension,” Annu. Rev. Psychol.54(1), 91–114 (2003).
[CrossRef] [PubMed]

Kaskhedikar, G.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

Kiguchi, M.

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

Koizumi, H.

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

Konishi, Y.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

Krasnow, B.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003).
[CrossRef] [PubMed]

Kubota, K.

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

Lin, P. Y.

P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).

Lin, S. I.

P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).

Liu, H.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

Lohmann, G.

A. D. Friederici, J. Brauer, and G. Lohmann, “Maturation of the language network: from inter- to intrahemispheric connectivities,” PLoS ONE6(6), e20726 (2011).
[CrossRef] [PubMed]

Lu, C. M.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

Maeder, P.

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

Malach, R.

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

Martin, R. C.

R. C. Martin, “Language Processing: Functional Organization and Neuroanatomical Basis,” Annu. Rev. Psychol.54(1), 55–89 (2003).
[CrossRef] [PubMed]

Martuzzi, R.

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

Menon, V.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003).
[CrossRef] [PubMed]

Mesquita, R. C.

Meuli, R.

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

Michalos, A.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Miezin, F. M.

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Murphy, K.

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
[CrossRef] [PubMed]

Nakano, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

Norris, D. G.

H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010).
[CrossRef] [PubMed]

Oja, E.

A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Netw.13(4-5), 411–430 (2000).
[CrossRef] [PubMed]

Otobe, T.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

Paunescu, L. A.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Peng, D. L.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

Penney, T.

P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).

Perdue, K.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

Perdue, K. L.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

Petersen, S. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Pierce, K.

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

Quaresima, V.

V. Quaresima, S. Bisconti, and M. Ferrari, “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang.121(2), 79–89 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Raichle, M. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Rao, S. M.

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Redfern, B. B.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
[CrossRef] [PubMed]

Reiss, A. L.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003).
[CrossRef] [PubMed]

Safonova, L. P.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Sato, H.

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

Schlaggar, B. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

Snyder, A. Z.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

Solso, S.

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

Sommer, I. E. C.

I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004).
[CrossRef] [PubMed]

Springer, J. A.

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Taga, G.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

Thiran, J. P.

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

Van Valin, R. D.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
[CrossRef] [PubMed]

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

Wallentin, M.

M. Wallentin, “Putative sex differences in verbal abilities and language cortex: a critical review,” Brain Lang.108(3), 175–183 (2009).
[CrossRef] [PubMed]

Watanabe, H.

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

White, B. R.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

Wilkins, D. P.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Wolf, U.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Xiang, H. D.

H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010).
[CrossRef] [PubMed]

Yetkin, F. Z.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995).
[CrossRef] [PubMed]

Yücel, M. A.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

Zang, Y. F.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

Zhang, Y. J.

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study,” Neuroimage60(4), 2008–2018 (2012).
[CrossRef] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

Zhu, C. Z.

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study,” Neuroimage60(4), 2008–2018 (2012).
[CrossRef] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

Annu. Rev. Psychol. (2)

M. A. Gernsbacher and M. P. Kaschak, “Neuroimaging Studies of Language Production and Comprehension,” Annu. Rev. Psychol.54(1), 91–114 (2003).
[CrossRef] [PubMed]

R. C. Martin, “Language Processing: Functional Organization and Neuroanatomical Basis,” Annu. Rev. Psychol.54(1), 55–89 (2003).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Brain (2)

I. E. C. Sommer, A. Aleman, A. Bouma, and R. S. Kahn, “Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies,” Brain127(8), 1845–1852 (2004).
[CrossRef] [PubMed]

J. A. Frost, J. R. Binder, J. A. Springer, T. A. Hammeke, P. S. F. Bellgowan, S. M. Rao, and R. W. Cox, “Language processing is strongly left lateralized in both sexes. Evidence from functional MRI,” Brain122(2), 199–208 (1999).
[CrossRef] [PubMed]

Brain Lang. (2)

M. Wallentin, “Putative sex differences in verbal abilities and language cortex: a critical review,” Brain Lang.108(3), 175–183 (2009).
[CrossRef] [PubMed]

V. Quaresima, S. Bisconti, and M. Ferrari, “A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults,” Brain Lang.121(2), 79–89 (2012).
[CrossRef] [PubMed]

Cereb. Cortex (1)

H. D. Xiang, H. M. Fonteijn, D. G. Norris, and P. Hagoort, “Topographical functional connectivity pattern in the perisylvian language networks,” Cereb. Cortex20(3), 549–560 (2010).
[CrossRef] [PubMed]

Cognition (1)

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition92(1-2), 145–177 (2004).
[CrossRef] [PubMed]

Hum. Brain Mapp. (1)

P. Hagmann, L. Cammoun, R. Martuzzi, P. Maeder, S. Clarke, J. P. Thiran, and R. Meuli, “Hand Preference and Sex Shape the Architecture of Language Networks,” Hum. Brain Mapp.27(10), 828–835 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

T. Funane, M. Kiguchi, H. Atsumori, H. Sato, K. Kubota, and H. Koizumi, “Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy,” J. Biomed. Opt.16(7), 077011 (2011).
[CrossRef] [PubMed]

J. Med. Biol. Eng. (1)

P. Y. Lin, S. I. Lin, T. Penney, and J. J. Chen, “Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients,” J. Med. Biol. Eng.29, 210–221 (2009).

J. Neurosci. (1)

F. Homae, H. Watanabe, T. Otobe, T. Nakano, T. Go, Y. Konishi, and G. Taga, “Development of global cortical networks in early infancy,” J. Neurosci.30(14), 4877–4882 (2010).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010).
[CrossRef] [PubMed]

Magn. Reson. Med. (1)

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995).
[CrossRef] [PubMed]

Neural Netw. (1)

A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Netw.13(4-5), 411–430 (2000).
[CrossRef] [PubMed]

Neuroimage (8)

K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009).
[CrossRef] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage56(3), 1362–1371 (2011).
[CrossRef] [PubMed]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012).
[CrossRef] [PubMed]

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage85(Pt 1), 127–135 (2014).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

H. Zhang, L. Duan, Y. J. Zhang, C. M. Lu, H. Liu, and C. Z. Zhu, “Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy,” Neuroimage55(2), 607–615 (2011).
[CrossRef] [PubMed]

L. Duan, Y. J. Zhang, and C. Z. Zhu, “Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study,” Neuroimage60(4), 2008–2018 (2012).
[CrossRef] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009).
[CrossRef] [PubMed]

Neuron (1)

I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011).
[CrossRef] [PubMed]

PLoS ONE (1)

A. D. Friederici, J. Brauer, and G. Lohmann, “Maturation of the language network: from inter- to intrahemispheric connectivities,” PLoS ONE6(6), e20726 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

D. A. Fair, A. L. Cohen, N. U. Dosenbach, J. A. Church, F. M. Miezin, D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar, “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. U.S.A.105(10), 4028–4032 (2008).
[CrossRef] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: A network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A.100(1), 253–258 (2003).
[CrossRef] [PubMed]

Psychon. Bull. Rev. (1)

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychon. Bull. Rev.5(4), 535–563 (1998).
[CrossRef]

Psychophysiology (1)

Y. Hoshi, “Functional near-infrared optical imaging: Utility and limitations in human brain mapping,” Psychophysiology40(4), 511–520 (2003).
[CrossRef] [PubMed]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Trends Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental schematics- (a) The schematic of source-detector grid where the red circles represent the sources, and the blue circles represent the detectors, and the square between a source and a detector is a channel. (b). Schematic (or visual) representation of the brain showing the location of each measurement channel. The 10-20 EEG sites F7, CP5, F8, and CP6 are also marked.

Fig. 2
Fig. 2

HBO correlation maps of the adults [(a) and (b)] and children [(c) and (d)] for IFG and STG. The seeds are located on the left hemisphere and can be visually recognized by the maximal color value in each map.

Fig. 3
Fig. 3

Comparison between the adult and children group in the average correlation coefficients of HBO, HB and HBT across two hemispheres in 3 areas of interest: IFG, STG and the whole (IFG + STG). The average and standard deviation were calculated for each group. Differences between adults and children are statistically significant for all cases, except for HB (IFG).

Fig. 4
Fig. 4

Comparison between adult male and female subjects in the average correlation coefficients of HBO, HB and HBT across two hemispheres in 3 areas of interest: IFG, STG and the whole (IFG + STG). The average and standard deviation were calculated for each sex. Two-sample t-test shows that only the difference in HBT (STG) is marginally significant (p = 0.0485<0.05), while the others are not significant.

Fig. 5
Fig. 5

Simulation study (a) An original correlation map generated from a transform of real experimental data. (b) The addition of a global component to each channel of the original map, results in overestimate in correlations. (c) The conventional regression method to remove the global component underestimates the real correlations seen in (a). (d) Using the ICA method to eliminate the global component faithfully reproduces the qualitative behavior of the correlations seen in (a).

Metrics