Abstract

We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Donnelly and A. Roorda, “Optimal pupil size in the human eye for axial resolution,” J. Opt. Soc. Am. A20(11), 2010–2015 (2003).
    [CrossRef] [PubMed]
  2. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
    [CrossRef] [PubMed]
  3. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
    [CrossRef] [PubMed]
  4. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  5. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  6. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
    [CrossRef] [PubMed]
  7. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
    [CrossRef] [PubMed]
  8. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011).
    [CrossRef] [PubMed]
  9. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A29(12), 2598–2607 (2012).
    [CrossRef] [PubMed]
  10. J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an adaptive optics optical coherence tomography system,” Opt. Express17(16), 13768–13784 (2009).
    [CrossRef] [PubMed]
  11. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
    [CrossRef] [PubMed]
  12. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011).
    [CrossRef] [PubMed]
  13. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express3(4), 715–734 (2012).
    [CrossRef] [PubMed]
  14. A. Jesacher, and M. J. Booth. “Sensorless adaptive optics for microscopy,” in SPIE MOEMS-MEMS (Olivier, S. S., Bifano, T. G. & Kubby, J. A.) 79310G–9 (2011).
  15. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(15), 14160–14171 (2011).
    [CrossRef] [PubMed]
  16. D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin. “An adaptive optics biomicroscope for mouse retinal imaging,” in Proc. SPIE 6467(1), 646703 (SPIE, 2007).
  17. C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).
  18. P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Optimization of high-order harmonic generation by adaptive control of a sub-10-fs pulse wave front,” Opt. Lett.29(2), 207–209 (2004).
    [CrossRef] [PubMed]
  19. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett.32(1), 5–7 (2007).
    [CrossRef] [PubMed]
  20. M. Minozzi, S. Bonora, A. V. Sergienko, G. Vallone, and P. Villoresi, “Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation,” Opt. Lett.38(4), 489–491 (2013).
    [CrossRef] [PubMed]
  21. R. J. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in Adaptive Optics - Optical Coherence Tomography,” Opt. Lett.38(22), 4801 (2013).
    [CrossRef] [PubMed]
  22. Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013).
    [CrossRef] [PubMed]
  23. C. J. Kempf, M. A. Helmbrecht, and M. Besse. “Adaptive optics control system for segmented MEMS deformable mirrors,” in Proc. SPIE 7595, MEMS Adapt. Opt. IV (Olivier, S. S., Bifano, T. G. & Kubby, J. A.) 75950M–12 (2010).
  24. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013).
    [CrossRef] [PubMed]
  25. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011).
    [CrossRef] [PubMed]
  26. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
    [CrossRef] [PubMed]
  27. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am.64(9), 1200 (1974).
    [CrossRef]
  28. L. Thibos, R. A. Applegate, J. T. Schwiegerling, and V. S. T. M. Webb, Robert. “Standards for reporting the optical aberrations of eyes - OSA Technical Digest,” in Vision Science and its Applications 35 232–244 (Optical Society of America, 2000).
  29. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007).
    [CrossRef] [PubMed]
  30. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express18(4), 3458–3476 (2010).
    [CrossRef] [PubMed]
  31. S. A. Rahman and M. J. Booth, “Direct wavefront sensing in adaptive optical microscopy using backscattered light,” Appl. Opt.52(22), 5523–5532 (2013).
    [CrossRef] [PubMed]
  32. M. Shaw, K. O’Holleran, and C. Paterson, “Investigation of the confocal wavefront sensor and its application to biological microscopy,” Opt. Express21(16), 19353–19362 (2013).
    [CrossRef] [PubMed]
  33. J. Wang, J.-F. Léger, J. Binding, A. C. Boccara, S. Gigan, and L. Bourdieu, “Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer,” Biomed. Opt. Express3(10), 2510–2525 (2012).
    [CrossRef] [PubMed]
  34. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007).
    [CrossRef] [PubMed]

2013

2012

2011

2010

S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express18(4), 3458–3476 (2010).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).

2009

2007

2006

2005

2004

2003

1974

Ahmad, K.

Akula, J. D.

Alt, C.

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Artal, P.

Balderas-Mata, S.

Bifano, T. G.

Binding, J.

Biss, D. P.

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

Bloch, P.

Boccara, A. C.

Bonora, R. J. S.

Bonora, S.

Booth, M. J.

Bourdieu, L.

Bower, B. A.

Buffington, A.

Burns, S. A.

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Cense, B.

Choi, S.

Choi, S. S.

Chui, T. Y. P.

Côté, D.

De Silvestri, S.

Debarre, D.

Derby, J. C.

Donnelly, W. J.

Drexler, W.

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Dubra, A.

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Evans, J. W.

Fercher, A. F.

Ferguson, R. D.

Fernández, E. J.

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Fulton, A. B.

Gao, W.

Geng, Y.

Gigan, S.

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Hammer, D. X.

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Herde, A. E.

Hermann, B.

Hofer, H.

Iftimia, N.

Izatt, J. A.

Jakobs, T. C.

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).

Jian, Y.

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013).
[CrossRef] [PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013).
[CrossRef] [PubMed]

Jones, S.

Jones, S. M.

Jonnal, R. S.

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Kim, D. Y.

Kocaoglu, O. P.

Laut, S.

Lee, S.

Léger, J.-F.

Li, C.

Li, J.

Libby, R. T.

Lin, C. P.

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Merigan, W. H.

Miller, D. T.

Minozzi, M.

Mujat, M.

Muller, R. A.

Nisoli, M.

O’Holleran, K.

Oliver, S. S.

Olivier, S.

Olivier, S. S.

Pascolini, M.

Patel, A.

Paterson, C.

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Pilli, S.

Plumb, E.

Podoleanu, A. G.

Poletto, L.

Porter, J.

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Prieto, P. M.

Queener, H.

Rahman, S. A.

Rha, J.

Roorda, A.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

W. J. Donnelly and A. Roorda, “Optimal pupil size in the human eye for axial resolution,” J. Opt. Soc. Am. A20(11), 2010–2015 (2003).
[CrossRef] [PubMed]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Sansone, G.

Sarunic, M. V.

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013).
[CrossRef] [PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013).
[CrossRef] [PubMed]

J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011).
[CrossRef] [PubMed]

Sattmann, H.

Schery, L. A.

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Sergienko, A. V.

Shannon, L.

Sharma, R.

Shaw, M.

Sredar, N.

Stagira, S.

Sumorok, D.

Tajouri, N.

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Tondello, G.

Tuohy, S.

Unterhuber, A.

Vallone, G.

Veilleux, I.

Villoresi, P.

Vozzi, C.

Wang, J.

Wang, Q.

Webb, R. H.

Werner, J. S.

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Williams, D. R.

Wilson, T.

Wong, K.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013).
[CrossRef] [PubMed]

Xu, J.

Yin, L.

Zamiri, P.

Zawadzki, R. J.

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013).
[CrossRef] [PubMed]

R. J. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in Adaptive Optics - Optical Coherence Tomography,” Opt. Lett.38(22), 4801 (2013).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an adaptive optics optical coherence tomography system,” Opt. Express17(16), 13768–13784 (2009).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A24(5), 1373–1383 (2007).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, M.

Zhou, Y.

Appl. Opt.

Biomed. Opt. Express

Bios

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Bios7550, 1–11 (2010).

J. Biomed. Opt.

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt.18(5), 056007 (2013).
[CrossRef] [PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nat. Methods

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012).
[CrossRef] [PubMed]

Opt. Express

M. Shaw, K. O’Holleran, and C. Paterson, “Investigation of the confocal wavefront sensor and its application to biological microscopy,” Opt. Express21(16), 19353–19362 (2013).
[CrossRef] [PubMed]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007).
[CrossRef] [PubMed]

S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express18(4), 3458–3476 (2010).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an adaptive optics optical coherence tomography system,” Opt. Express17(16), 13768–13784 (2009).
[CrossRef] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(15), 14160–14171 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Optom. Vis. Sci.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Vision Res.

D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
[CrossRef] [PubMed]

Other

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin. “An adaptive optics biomicroscope for mouse retinal imaging,” in Proc. SPIE 6467(1), 646703 (SPIE, 2007).

A. Jesacher, and M. J. Booth. “Sensorless adaptive optics for microscopy,” in SPIE MOEMS-MEMS (Olivier, S. S., Bifano, T. G. & Kubby, J. A.) 79310G–9 (2011).

C. J. Kempf, M. A. Helmbrecht, and M. Besse. “Adaptive optics control system for segmented MEMS deformable mirrors,” in Proc. SPIE 7595, MEMS Adapt. Opt. IV (Olivier, S. S., Bifano, T. G. & Kubby, J. A.) 75950M–12 (2010).

L. Thibos, R. A. Applegate, J. T. Schwiegerling, and V. S. T. M. Webb, Robert. “Standards for reporting the optical aberrations of eyes - OSA Technical Digest,” in Vision Science and its Applications 35 232–244 (Optical Society of America, 2000).

Supplementary Material (1)

» Media 1: MOV (3944 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the WSAO FD-OCT system: DC - dispersion compensation; DM - deformable mirror; FC - 20/80 fiber coupler, 20% of the light from SLD goes to sample arm, 80% goes to reference arm; GM1, GM2 - horizontal and vertical galvo scanning mirrors; FL - fundus lens; PC - polarization controller. SLD - superluminescent diode; L - achromatic lenses: L0: (f = 16mm); L1, L2: (f = 300mm); L3, L4: (f = 200mm); L5, L6: (f = 150mm); L7, (f = 100mm) L8: (f = 300mm); OBJ - objective: (f = 25mm); ND - neutral density filter; P represents the location of the planes conjugated to the pupil throughout the system. GM1 is slow scan mirror and is presented unfolded for clarity. Note that the schematic is drawn for illustrative purposes only; it does not reflect the actual physical dimensions of the system.

Fig. 2
Fig. 2

WSAO search algorithm flowchart. DM – Deformable Mirror; ki* - the optimized coefficient for Zernike mode i.

Fig. 3
Fig. 3

OCT images of a leaf with and without WSAO corrections. Bottom figure: (blue line graph) The summed intensity (merit function value) of en face images after optimization of each Zernike mode. (red bar graph) The optimized Zernike coefficient value for each Zernike mode. Scale bar: 20μm. The Zernike coefficients follow the OSA standard for reporting the optical aberrations of eyes.

Fig. 4
Fig. 4

Merit function during the optimization process. Only the first search iteration of 8 Zernike modes are shown for clarity of the presentation, further iterations resulted in an increased value of the merit function for some of the terms. The data presented in Fig. 3 were obtained after the complete optimization process.

Fig. 5
Fig. 5

Screen capture of an imaging session of a pigmented mouse (Media 1). The first part of the video presents the WSAO optimization on the nerve fiber layer with a low resolution scanning pattern. The field of view (170x170 µm) was close to the optic nerve head as indicated by the converging nerve fibers. The green arrow points to a capillary and the red arrow points to the edge of the blood vessel wall. The second part of the video that shows the high resolution images is displayed at 2x the acquisition speed, and the field of view was changed to 250x250 µm and 333x333 µm during acquisition.

Fig. 6
Fig. 6

WSAO OCT images of NFL of a pigmented mouse. (a) OCT B-scan in linear scale, emphasizing the location and depth of focus of the imaging beam at the NFL. (b-d) En face projection of the nerve fiber layer (generated within the red brackets in (a)) before (b) and after (c) WSAO optimization. (d) was acquired with a larger field of view after WSAO optimization. (e) (Blue line graph) The summed intensity (merit function value) of en face images after optimization of each Zernike mode. (Red bar graph) The optimized Zernike coefficient value for each Zernike mode. The RMS of the wavefront applied by the DM is 0.125µm. Scale bar: 25μm.

Fig. 7
Fig. 7

(a) Cross sectional images of the albino mouse retina acquired in vivo with the sensorless WSAO OCT system presented on a linear scale. The axial depths indicated by the brackets represent the location of the en face projection of the retinal layers of interests with AO-OFF (b) and AO-ON (c,d). Scale bar: 20μm. (e) The effect of AO correction is demonstrated by comparing the signal intensity across lines taken from the en face images at locations (b, red) and (c, blue). (f) (Blue line graph) The summed intensity (merit function value) of the en face images after optimization of each Zernike mode. (Red bar graph) The optimized Zernike coefficient value for each Zernike mode. The RMS of the wavefront applied by the DM is 0.175µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J(k)= x,y ( max Δz ( I w(k) (x,y,z) ) ) ,
w(k)= n=3 20 k n Z n .
k i * = argmax k i ( J( k 1 * , k 2 * ,, k i ,, k n1 (0) , k n (0) ) ), k 1 (0) , k 2 (0) ,, k n (0) =0.

Metrics