Abstract

In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser

Wei Shi, Parsin Hajireza, Peng Shao, Alexander Forbrich, and Roger J. Zemp
Opt. Express 19(18) 17143-17150 (2011)

Real-time handheld optical-resolution photoacoustic microscopy

Parsin Hajireza, Wei Shi, and Roger J. Zemp
Opt. Express 19(21) 20097-20102 (2011)

Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source

Yazan N. Billeh, Mengyang Liu, and Takashi Buma
Opt. Express 18(18) 18519-18524 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. Li, K. I. Maslov, and L. V. Wang, “Reflection-mode multifocal optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(3), 030501 (2013).
    [Crossref] [PubMed]
  2. J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, “Double-illumination photoacoustic microscopy,” Opt. Lett. 37(4), 659–661 (2012).
    [Crossref] [PubMed]
  3. P. Hajireza, A. Forbrich, Y. Jiang, W. Shi, and R. Zemp, “In vivo multi-wavelength optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source”, Proc. SPIE 8581,” Photons Plus Ultrasound:Imaging and Sensing2013, 858129 (2013).
  4. S. L. Chen, J. Burnett, D. Sun, X. Wei, Z. Xie, and X. Wang, “Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor,” Biomed. Opt. Express 4(11), 2657–2666 (2013).
    [Crossref] [PubMed]
  5. Z. Xie, W. Roberts, P. Carson, X. Liu, C. Tao, and X. Wang, “Evaluation of bladder microvasculature with high-resolution photoacoustic imaging,” Opt. Lett. 36(24), 4815–4817 (2011).
    [Crossref] [PubMed]
  6. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  7. H. Wang, X. Yang, Y. Liu, B. Jiang, and Q. Luo, “Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective,” Opt. Express 21(20), 24210–24218 (2013).
    [Crossref] [PubMed]
  8. S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
    [Crossref] [PubMed]
  9. W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
    [Crossref] [PubMed]
  10. B. Rao, K. Maslov, A. Danielli, R. Chen, K. K. Shung, Q. Zhou, and L. V. Wang, “Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution,” Opt. Lett. 36(7), 1137–1139 (2011).
    [Crossref] [PubMed]
  11. P. Hajireza, W. Shi, and R. J. Zemp, “Real-time handheld optical-resolution photoacoustic microscopy,” Opt. Express 19(21), 20097–20102 (2011).
    [Crossref] [PubMed]
  12. L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
    [Crossref]
  13. P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
    [Crossref] [PubMed]
  14. P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10(5), 055603 (2013).
    [Crossref]
  15. P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology, ” Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing2011, 78990P (2011).
  16. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  17. P. Hajireza, K. Krause, M. Brett, and R. Zemp, “Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound,” Opt. Express 21(5), 6391–6400 (2013).
    [Crossref] [PubMed]
  18. W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
    [Crossref] [PubMed]
  19. Y. N. Billeh, M. Liu, and T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010).
    [Crossref] [PubMed]
  20. D. Koeplinger, L. Mengyang, and T. Buma, “Photoacoustic microscopy with a pulsed multi-color source based on stimulated Raman scattering,” Ultrasonics Symposium (IUS), 2011 IEEE International, 296 – 299, (2011).
  21. A. Loya, J. P. Dumas, and T. Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium,(2012 IEEE International), pp.1208–1211.
  22. P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38(15), 2711–2713 (2013).
    [Crossref] [PubMed]
  23. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).

2013 (8)

G. Li, K. I. Maslov, and L. V. Wang, “Reflection-mode multifocal optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(3), 030501 (2013).
[Crossref] [PubMed]

S. L. Chen, J. Burnett, D. Sun, X. Wei, Z. Xie, and X. Wang, “Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor,” Biomed. Opt. Express 4(11), 2657–2666 (2013).
[Crossref] [PubMed]

H. Wang, X. Yang, Y. Liu, B. Jiang, and Q. Luo, “Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective,” Opt. Express 21(20), 24210–24218 (2013).
[Crossref] [PubMed]

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
[Crossref]

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10(5), 055603 (2013).
[Crossref]

P. Hajireza, K. Krause, M. Brett, and R. Zemp, “Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound,” Opt. Express 21(5), 6391–6400 (2013).
[Crossref] [PubMed]

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38(15), 2711–2713 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (5)

2010 (1)

2009 (1)

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

2008 (2)

Beard, P.

Billeh, Y. N.

Brett, M.

Buma, T.

Burnett, J.

Carson, P.

Chen, R.

Chen, S. L.

Danielli, A.

Forbrich, A.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38(15), 2711–2713 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

P. Hajireza, A. Forbrich, Y. Jiang, W. Shi, and R. Zemp, “In vivo multi-wavelength optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source”, Proc. SPIE 8581,” Photons Plus Ultrasound:Imaging and Sensing2013, 858129 (2013).

Hajireza, P.

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10(5), 055603 (2013).
[Crossref]

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

P. Hajireza, K. Krause, M. Brett, and R. Zemp, “Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound,” Opt. Express 21(5), 6391–6400 (2013).
[Crossref] [PubMed]

P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38(15), 2711–2713 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. J. Zemp, “Real-time handheld optical-resolution photoacoustic microscopy,” Opt. Express 19(21), 20097–20102 (2011).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
[Crossref] [PubMed]

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology, ” Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing2011, 78990P (2011).

P. Hajireza, A. Forbrich, Y. Jiang, W. Shi, and R. Zemp, “In vivo multi-wavelength optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source”, Proc. SPIE 8581,” Photons Plus Ultrasound:Imaging and Sensing2013, 858129 (2013).

Hu, S.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

Ji, X.

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
[Crossref]

Jiang, B.

Jiang, Y.

P. Hajireza, A. Forbrich, Y. Jiang, W. Shi, and R. Zemp, “In vivo multi-wavelength optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source”, Proc. SPIE 8581,” Photons Plus Ultrasound:Imaging and Sensing2013, 858129 (2013).

Kerr, S.

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology, ” Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing2011, 78990P (2011).

Krause, K.

Laufer, J.

Li, G.

G. Li, K. I. Maslov, and L. V. Wang, “Reflection-mode multifocal optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(3), 030501 (2013).
[Crossref] [PubMed]

Liu, G.

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
[Crossref]

Liu, M.

Liu, X.

Liu, Y.

Luo, Q.

Maslov, K.

Maslov, K. I.

G. Li, K. I. Maslov, and L. V. Wang, “Reflection-mode multifocal optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(3), 030501 (2013).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, “Double-illumination photoacoustic microscopy,” Opt. Lett. 37(4), 659–661 (2012).
[Crossref] [PubMed]

Puckett, E. R.

Rao, B.

Roberts, W.

Rowland, K. J.

Shao, P.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology, ” Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing2011, 78990P (2011).

Shi, W.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10(5), 055603 (2013).
[Crossref]

P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. J. Zemp, “Real-time handheld optical-resolution photoacoustic microscopy,” Opt. Express 19(21), 20097–20102 (2011).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

P. Hajireza, A. Forbrich, Y. Jiang, W. Shi, and R. Zemp, “In vivo multi-wavelength optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source”, Proc. SPIE 8581,” Photons Plus Ultrasound:Imaging and Sensing2013, 858129 (2013).

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology, ” Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing2011, 78990P (2011).

Shung, K. K.

Sun, D.

Tao, C.

Tsytsarev, V.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Wang, H.

Wang, L. V.

Wang, X.

Warner, B. W.

Wei, X.

Xie, Z.

Yang, D.

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
[Crossref]

Yang, X.

Yao, J.

Zemp, R.

P. Hajireza, K. Krause, M. Brett, and R. Zemp, “Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound,” Opt. Express 21(5), 6391–6400 (2013).
[Crossref] [PubMed]

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10(5), 055603 (2013).
[Crossref]

P. Hajireza, A. Forbrich, Y. Jiang, W. Shi, and R. Zemp, “In vivo multi-wavelength optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source”, Proc. SPIE 8581,” Photons Plus Ultrasound:Imaging and Sensing2013, 858129 (2013).

Zemp, R. J.

Zeng, L.

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
[Crossref]

Zhang, E.

Zhang, H. F.

Zhou, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett. 102(5), 053704 (2013).
[Crossref]

Biomed. Opt. Express (1)

J. Biomed. Opt. (3)

G. Li, K. I. Maslov, and L. V. Wang, “Reflection-mode multifocal optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(3), 030501 (2013).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

P. Hajireza, W. Shi, and R. Zemp, “Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy,” Laser Phys. Lett. 10(5), 055603 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Other (5)

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology, ” Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing2011, 78990P (2011).

D. Koeplinger, L. Mengyang, and T. Buma, “Photoacoustic microscopy with a pulsed multi-color source based on stimulated Raman scattering,” Ultrasonics Symposium (IUS), 2011 IEEE International, 296 – 299, (2011).

A. Loya, J. P. Dumas, and T. Buma, “Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber,” in Proceedings of IEEE Ultrasonics Symposium,(2012 IEEE International), pp.1208–1211.

P. Hajireza, A. Forbrich, Y. Jiang, W. Shi, and R. Zemp, “In vivo multi-wavelength optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source”, Proc. SPIE 8581,” Photons Plus Ultrasound:Imaging and Sensing2013, 858129 (2013).

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A) Experimental setup of multi-wavelength OR-PAM. FLD: Fiber laser diode, OL: Objective lens, PM-SMF: Polarization maintaining single mode fiber, CL: Collimator lens, UST: Ultrasound transducer B) Photograph of the generated multi-wavelength spectrum in a PM-SMF.
Fig. 2
Fig. 2 A) SRS peaks for 160kHz PRR and a 15m PM-SMF. B) Unfiltered (dashed) and filtered (solid) SRS peaks for 160kHz PRR and a 6m PM-SMF (the input power varied between 55 and 100mW).
Fig. 3
Fig. 3 C-scan images of (A) carbon fiber networks and (B) the dye-filled tubes at 3 different wavelengths for 100% red and 0% blue dyes.
Fig. 4
Fig. 4 The average signal for selected regions within the tube shown in Fig. 3(B). This data has been used to determine the absorption spectrum.
Fig. 5
Fig. 5 Mock oxygen saturation estimation using mixtures of red and blue dye.
Fig. 6
Fig. 6 Multi-wavelength in vivo imaging using 545nm (A) and 558nm (B) pulses. Oxygen saturation estimations are shown in (C) for the area within the dashed rectangle.

Tables (2)

Tables Icon

Table 1 Measured power of SRS peaks generated in varying fiber lengths and at different PRR

Tables Icon

Table 2 Spectral demixing of PA signals of tubes containing various concentrations dyes

Metrics