Abstract

Doppler OCT (DOCT) can provide blood flow velocity information which is valuable for investigation of microvascular structure and function. However, DOCT is only sensitive to motion parallel with the imaging beam, so that knowledge of flow direction is needed for absolute velocity determination. Here, absolute volumetric flow is calculated by integrating velocity components perpendicular to the B-scan plane. These components are acquired using two illumination beams with a predetermined angular separation, produced by a delay encoded technique. This technology enables rapid pulsatile flow measurement from single B-scans without the need for 3-D volumetric data or knowledge of blood vessel orientation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999).
    [CrossRef] [PubMed]
  2. M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
    [CrossRef] [PubMed]
  3. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
    [CrossRef] [PubMed]
  4. M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
    [CrossRef] [PubMed]
  5. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
    [CrossRef] [PubMed]
  6. B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
    [CrossRef] [PubMed]
  7. N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
    [CrossRef] [PubMed]
  8. R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
    [CrossRef] [PubMed]
  9. K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007).
    [CrossRef] [PubMed]
  10. R. E. Poelmann, A. C. Gittenberger-de Groot, and B. P. Hierck, “The development of the heart and microcirculation: role of shear stress,” Med. Biol. Eng. Comput.46(5), 479–484 (2008).
    [CrossRef] [PubMed]
  11. J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
    [CrossRef] [PubMed]
  12. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express15(10), 6251–6267 (2007).
    [CrossRef] [PubMed]
  13. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010).
    [CrossRef] [PubMed]
  14. M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron.18(3), 1166–1175 (2012).
    [CrossRef]
  15. L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express3(11), 3022–3032 (2012).
    [CrossRef] [PubMed]
  16. A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
    [CrossRef] [PubMed]
  17. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  18. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  19. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000).
    [CrossRef] [PubMed]
  20. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012).
    [CrossRef] [PubMed]
  21. A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken)292(3), 311–319 (2009).
    [CrossRef] [PubMed]
  22. P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
    [CrossRef] [PubMed]
  23. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
    [CrossRef] [PubMed]
  24. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
    [CrossRef] [PubMed]
  25. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007).
    [CrossRef] [PubMed]
  26. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
    [CrossRef] [PubMed]
  27. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
    [CrossRef] [PubMed]
  28. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
    [CrossRef] [PubMed]
  29. J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
    [CrossRef] [PubMed]
  30. D. P. Davé and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett.25(20), 1523–1525 (2000).
    [CrossRef] [PubMed]
  31. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
    [CrossRef] [PubMed]
  32. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
    [CrossRef] [PubMed]
  33. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008).
    [CrossRef] [PubMed]
  34. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
    [CrossRef] [PubMed]
  35. C. Blatter, S. Coquoz, B. Grajciar, A. S. G. Singh, M. Bonesi, R. M. Werkmeister, L. Schmetterer, and R. A. Leitgeb, “Dove prism based rotating dual beam bidirectional Doppler OCT,” Biomed. Opt. Express4(7), 1188–1203 (2013).
    [CrossRef] [PubMed]
  36. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express18(3), 2477–2494 (2010).
    [CrossRef] [PubMed]
  37. W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
    [CrossRef] [PubMed]
  38. T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
    [CrossRef] [PubMed]
  39. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009).
    [CrossRef] [PubMed]
  40. M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
    [CrossRef] [PubMed]
  41. Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express13(17), 6407–6415 (2005).
    [CrossRef] [PubMed]
  42. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett.32(24), 3525–3527 (2007).
    [CrossRef] [PubMed]
  43. C. Blatter, B. Grajciar, L. Schmetterer, and R. A. Leitgeb, “Angle independent flow assessment with bidirectional Doppler optical coherence tomography,” Opt. Lett.38(21), 4433–4436 (2013).
    [CrossRef] [PubMed]
  44. G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol.137(1), 156–169 (2004).
    [CrossRef] [PubMed]
  45. P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010).
    [CrossRef] [PubMed]
  46. E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
    [CrossRef] [PubMed]
  47. H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000).
    [CrossRef] [PubMed]
  48. A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
    [CrossRef] [PubMed]
  49. J. Flammer, “The vascular concept of glaucoma,” Surv. Ophthalmol.38(Suppl), S3–S6 (1994).
    [CrossRef] [PubMed]
  50. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
    [CrossRef] [PubMed]
  51. K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
    [CrossRef] [PubMed]
  52. G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011).
    [CrossRef] [PubMed]

2013 (3)

2012 (8)

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012).
[CrossRef] [PubMed]

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express3(11), 3022–3032 (2012).
[CrossRef] [PubMed]

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron.18(3), 1166–1175 (2012).
[CrossRef]

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

2011 (2)

G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

2010 (4)

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010).
[CrossRef] [PubMed]

P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010).
[CrossRef] [PubMed]

2009 (4)

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken)292(3), 311–319 (2009).
[CrossRef] [PubMed]

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (7)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
[CrossRef] [PubMed]

K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express15(10), 6251–6267 (2007).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett.32(24), 3525–3527 (2007).
[CrossRef] [PubMed]

2006 (1)

K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
[CrossRef] [PubMed]

2005 (2)

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express13(17), 6407–6415 (2005).
[CrossRef] [PubMed]

2004 (1)

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol.137(1), 156–169 (2004).
[CrossRef] [PubMed]

2003 (3)

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

2002 (2)

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

2000 (4)

H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000).
[CrossRef] [PubMed]

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000).
[CrossRef] [PubMed]

D. P. Davé and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett.25(20), 1523–1525 (2000).
[CrossRef] [PubMed]

1999 (2)

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999).
[CrossRef] [PubMed]

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

1997 (2)

1995 (1)

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

1994 (1)

J. Flammer, “The vascular concept of glaucoma,” Surv. Ophthalmol.38(Suppl), S3–S6 (1994).
[CrossRef] [PubMed]

Acevedo-Bolton, G.

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

Adler, D. C.

Ahn, Y.-C.

Akasaka, N.

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Amde, W.

G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011).
[CrossRef] [PubMed]

Azuma, N.

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Bachmann, A. H.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007).
[CrossRef] [PubMed]

Baiker, M.

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

Barton, J. K.

Barwick, L.

Baumann, B.

Belding, J.

Blatter, C.

Boas, D. A.

Boltz, A.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Bonesi, M.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
[CrossRef] [PubMed]

Brannath, W.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Broekhuizen, M. L. A.

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

Cable, A. E.

Caprioli, J.

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol.137(1), 156–169 (2004).
[CrossRef] [PubMed]

Chen, Z.

Choi, W.

Clermont, A. C.

Coquoz, S.

Costa, V. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Davé, D. P.

Davis, A.

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken)292(3), 311–319 (2009).
[CrossRef] [PubMed]

de Groot, P. G.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

deAlmeida, A.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Dekker, R. J.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

DeRuiter, M. C.

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999).
[CrossRef] [PubMed]

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

Dragostinoff, N.

Duker, J. S.

Duzgun, S. A.

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Egan, K.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

Ergun, E.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Fabritius, T.

Feener, E. P.

Ferguson, R. D.

Ferrante, A. A.

Flammer, J.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

J. Flammer, “The vascular concept of glaucoma,” Surv. Ophthalmol.38(Suppl), S3–S6 (1994).
[CrossRef] [PubMed]

Fontijn, R. D.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

Forouhar, A. S.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

Francis, B. A.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Frantal, S.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Fraser, S. E.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

Friedman, E.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

Friedman, E. S.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

Fujimoto, J. G.

Funatsu, H.

K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
[CrossRef] [PubMed]

Gargesha, M.

Garhöfer, G.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Gharib, M.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

Gil-Flamer, J.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Gittenberger-de Groot, A. C.

R. E. Poelmann, A. C. Gittenberger-de Groot, and B. P. Hierck, “The development of the heart and microcirculation: role of shear stress,” Med. Biol. Eng. Comput.46(5), 479–484 (2008).
[CrossRef] [PubMed]

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999).
[CrossRef] [PubMed]

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

Gorczynska, I.

Götzinger, E.

Gourdie, R. G.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Gragoudas, E. S.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

Grajciar, B.

Greenfield, D. S.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Groenendijk, B. C. W.

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

Gu, S.

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express3(11), 3022–3032 (2012).
[CrossRef] [PubMed]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010).
[CrossRef] [PubMed]

Haileselassie, Y.

G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011).
[CrossRef] [PubMed]

Hamada, H.

K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007).
[CrossRef] [PubMed]

Hammer, D. X.

Harino, S.

K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
[CrossRef] [PubMed]

Hedges, T. R.

P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010).
[CrossRef] [PubMed]

Hierck, B. P.

R. E. Poelmann, A. C. Gittenberger-de Groot, and B. P. Hierck, “The development of the heart and microcirculation: role of shear stress,” Med. Biol. Eng. Comput.46(5), 479–484 (2008).
[CrossRef] [PubMed]

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hogers, B.

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999).
[CrossRef] [PubMed]

Hori, S.

K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
[CrossRef] [PubMed]

Hornegger, J.

Horrevoets, A. J. G.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

Hove, J. R.

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

Hu, Z.

Huang, D.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
[CrossRef] [PubMed]

Huber, R.

Hwang, J. C.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Iftimia, N. V.

Ikeda, M.

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Iwasaki, T.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

Izatt, J.

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken)292(3), 311–319 (2009).
[CrossRef] [PubMed]

Izatt, J. A.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

Jaffe, G. J.

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol.137(1), 156–169 (2004).
[CrossRef] [PubMed]

Jenkins, M. W.

Jindahra, P.

P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010).
[CrossRef] [PubMed]

Jung, W.

Kito, H.

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Konduru, R.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Köster, R. W.

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

Kraus, M. F.

Krieglstein, G. K.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Krupsky, S.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

Kulkarni, M. D.

Landa, G.

G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011).
[CrossRef] [PubMed]

Lane, A. M.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

Lang, G. E.

H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000).
[CrossRef] [PubMed]

Lang, G. K.

H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000).
[CrossRef] [PubMed]

Lasser, T.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007).
[CrossRef] [PubMed]

Leitgeb, R. A.

Li, P.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

Liebling, M.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

Lin, A. J.

Liu, A.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

Liu, G.

Liu, J. J.

Lu, A.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Luksch, A.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Maar, N.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Makita, S.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
[CrossRef] [PubMed]

Malekafzali, A.

Mendoza-Santiesteban, C. E.

P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010).
[CrossRef] [PubMed]

Michaely, R.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007).
[CrossRef] [PubMed]

Milner, T. E.

Miura, M.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

Mujat, M.

Nelson, J. S.

Noma, H.

K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
[CrossRef] [PubMed]

Oak, S. S.

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

Orgül, S.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Orzalesi, N.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Pannekoek, H.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

Pedersen, C. J.

Peterson, L.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010).
[CrossRef] [PubMed]

Peterson, L. M.

Pircher, M.

Plant, G. T.

P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010).
[CrossRef] [PubMed]

Plummer, D.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

Poelmann, R. E.

R. E. Poelmann, A. C. Gittenberger-de Groot, and B. P. Hierck, “The development of the heart and microcirculation: role of shear stress,” Med. Biol. Eng. Comput.46(5), 479–484 (2008).
[CrossRef] [PubMed]

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999).
[CrossRef] [PubMed]

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

Potsaid, B.

Pourquie, M. J. B. M.

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

Reckova, M.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Remsch, H.

H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000).
[CrossRef] [PubMed]

Renard, J.-P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Rollins, A.

Rollins, A. M.

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express3(11), 3022–3032 (2012).
[CrossRef] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron.18(3), 1166–1175 (2012).
[CrossRef]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010).
[CrossRef] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett.32(24), 3525–3527 (2007).
[CrossRef] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express15(10), 6251–6267 (2007).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000).
[CrossRef] [PubMed]

Rosen, R. B.

G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011).
[CrossRef] [PubMed]

Rosengarten, C.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Rothenberg, F.

Rugonyi, S.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

Ruvinskaya, S.

Sadda, S. R.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Sakadzic, S.

Sakata, K.

K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
[CrossRef] [PubMed]

Salamanca, S.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

Sasajima, T.

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Schmetterer, L.

Schmoll, T.

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
[CrossRef] [PubMed]

Sedmera, D.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Sehi, M.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Serra, L. M.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Shi, L.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

Shiratori, H.

K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007).
[CrossRef] [PubMed]

Shure, M. A.

Singh, A. S. G.

Spraul, C. W.

H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000).
[CrossRef] [PubMed]

Srinivas, S.

Srinivasan, V. J.

Stanley, C. P.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Stefánsson, E.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Stur, M.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Sumpio, B. E.

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Tan, O.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
[CrossRef] [PubMed]

Thompson, R. P.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Thornburg, K. L.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

Tromberg, B. J.

van Gemert, M. J. C.

van Soest, S.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

VanBavel, E.

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

Varma, R.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Vermot, J.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

Villiger, M. L.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007).
[CrossRef] [PubMed]

Vrolijk, J.

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

Vu, D.

Wang, R.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

Wang, R. K.

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

Wang, X.

Wang, Y.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
[CrossRef] [PubMed]

Watanabe, M.

L. M. Peterson, M. W. Jenkins, S. Gu, L. Barwick, M. Watanabe, and A. M. Rollins, “4D shear stress maps of the developing heart using Doppler optical coherence tomography,” Biomed. Opt. Express3(11), 3022–3032 (2012).
[CrossRef] [PubMed]

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron.18(3), 1166–1175 (2012).
[CrossRef]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010).
[CrossRef] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express15(10), 6251–6267 (2007).
[CrossRef] [PubMed]

Weigert, G.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Welch, A. J.

Werkmeister, R. M.

Wessels, A.

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

Wilson, D. L.

Wimpissinger, B.

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

Wladimiroff, J. W.

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

Wu, D.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

Wu, W.

Yashiro, K.

K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007).
[CrossRef] [PubMed]

Yasuno, Y.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
[CrossRef] [PubMed]

Yazdanfar, S.

Yin, X.

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

Zhang, X.

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” Am. J. Ophthalmol.137(1), 156–169 (2004).
[CrossRef] [PubMed]

Anat. Rec. (Hoboken) (1)

A. Davis, J. Izatt, and F. Rothenberg, “Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry,” Anat. Rec. (Hoboken)292(3), 311–319 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (5)

Blood (1)

R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Cardiovasc. Res. (1)

B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999).
[CrossRef] [PubMed]

Circ. Res. (2)

M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003).
[CrossRef] [PubMed]

B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in Shear Stress-Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo,” Circ. Res.96(12), 1291–1298 (2005).
[CrossRef] [PubMed]

Curr. Opin. Neurol. (1)

P. Jindahra, T. R. Hedges, C. E. Mendoza-Santiesteban, and G. T. Plant, “Optical coherence tomography of the retina: applications in neurology,” Curr. Opin. Neurol.23(1), 16–23 (2010).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

H. Remsch, C. W. Spraul, G. K. Lang, and G. E. Lang, “Changes of retinal capillary blood flow in age-related maculopathy,” Graefes Arch. Clin. Exp. Ophthalmol.238(12), 960–964 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Longitudinal Imaging of Heart Development With Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron.18(3), 1166–1175 (2012).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (3)

A. Boltz, A. Luksch, B. Wimpissinger, N. Maar, G. Weigert, S. Frantal, W. Brannath, G. Garhöfer, E. Ergun, M. Stur, and L. Schmetterer, “Choroidal Blood Flow and Progression of Age-Related Macular Degeneration in the Fellow Eye in Patients with Unilateral Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci.51(8), 4220–4225 (2010).
[CrossRef] [PubMed]

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

J. C. Hwang, R. Konduru, X. Zhang, O. Tan, B. A. Francis, R. Varma, M. Sehi, D. S. Greenfield, S. R. Sadda, and D. Huang, “Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma,” Invest. Ophthalmol. Vis. Sci.53(6), 3020–3026 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.12(4), 041215 (2007).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213 (2007).
[CrossRef] [PubMed]

J. Biophotonics (1)

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
[CrossRef] [PubMed]

J. Vasc. Surg. (1)

N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

R. E. Poelmann, A. C. Gittenberger-de Groot, and B. P. Hierck, “The development of the heart and microcirculation: role of shear stress,” Med. Biol. Eng. Comput.46(5), 479–484 (2008).
[CrossRef] [PubMed]

Nature (3)

K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003).
[CrossRef] [PubMed]

Ophthalmology (2)

E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, and E. S. Gragoudas, “Ocular Blood Flow Velocity in Age-Related Macular Degeneration,” Ophthalmology102(4), 640–646 (1995).
[CrossRef] [PubMed]

K. Sakata, H. Funatsu, S. Harino, H. Noma, and S. Hori, “Relationship between Macular Microcirculation and Progression of Diabetic Macular Edema,” Ophthalmology113(8), 1385–1391 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (10)

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett.32(24), 3525–3527 (2007).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
[CrossRef] [PubMed]

C. Blatter, B. Grajciar, L. Schmetterer, and R. A. Leitgeb, “Angle independent flow assessment with bidirectional Doppler optical coherence tomography,” Opt. Lett.38(21), 4433–4436 (2013).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000).
[CrossRef] [PubMed]

D. P. Davé and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett.25(20), 1523–1525 (2000).
[CrossRef] [PubMed]

PLoS Biol. (1)

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act Through Klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol.7(11), e1000246 (2009).
[CrossRef] [PubMed]

PLoS ONE (1)

A. Liu, X. Yin, L. Shi, P. Li, K. L. Thornburg, R. Wang, and S. Rugonyi, “Biomechanics of the Chick Embryonic Heart Outflow Tract at HH18 Using 4D Optical Coherence Tomography Imaging and Computational Modeling,” PLoS ONE7(7), e40869 (2012).
[CrossRef] [PubMed]

Prog. Retin. Eye Res. (1)

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Retina (1)

G. Landa, W. Amde, Y. Haileselassie, and R. B. Rosen, “Cilioretinal Arteries in Diabetic Eyes Are Associated With Increased Retinal Blood Flow Velocity and Occurrence of Diabetic Macular Edema,” Retina31(2), 304–311 (2011).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

J. Flammer, “The vascular concept of glaucoma,” Surv. Ophthalmol.38(Suppl), S3–S6 (1994).
[CrossRef] [PubMed]

Ultrasound Obstet. Gynecol. (1)

M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical flow percentage error from vessel angle estimation inaccuracies as a function of Doppler angle. The typical inter-user variability we observe when measuring vessel orientation in 3D volumes is around 1.0° which can result in flow error greater than 20% when the Doppler angle is at 85°. The blue box represents the typical vessel angles for the quail embryonic vascular network.

Fig. 2
Fig. 2

(a) Principle of operation: A glass plate (GP) was introduced into the imaging beam and the resulting two imaging sub-beams (A, B) are incident on a capillary tube. (b) OCT Doppler overlay image generated from the plane cross-sectioning the capillary tube showing the three sub-images (AA, BB, AB/BA) generated from the two delay-encoded sub-beam paths (A, B). The illuminating sub-beams have different effective angles of incidence resulting in different Doppler images. (c) Diagram defining the vectors, angles and velocities used for absolute flow calculation (see description in text).

Fig. 3
Fig. 3

Simulated and measured flow rates in a capillary tube plotted against varying polar angles. A syringe pump perfused the capillary tube at a constant flow rate of 0.83uL/sec represented by the dotted line in both panels. (a) Flow rates calculated from the straightforward analysis utilizing Eq. (6) showing the increasing overestimation at larger polar angles. The results generated from the simulated data are represented by the solid black line. (b) Flow rates calculated using methods 1 and 2 showing unbiased flow measurement at all angles measured. The simulated data are identical to the constant flow rate line so they are both represented by a single black dotted line. All measured flow rates are represented as mean ± S.D. over 80 imaging frames.

Fig. 4
Fig. 4

(a) Measured absolute flow in a capillary tube plotted vs actual syringe pump flow rates. Flow rates are represented as mean ± S.D. using the combined results from three independent experiments with 80 imaging frames at each angle. (b) Constant absolute flow measured at different azimuthal angle orientations of the capillary tube phantom at a polar angle of 3°. (c) Constant absolute flow measured at different polar angle orientations of the capillary tube phantom at an azimuthal angle of 5° (the actual syringe pump flow rate is set at 0.83 µl/sec for both angle variation experiments). Flow rates are represented as mean ± S.D. over 80 imaging frames.

Fig. 5
Fig. 5

(a) A representative stage HH18 quail embryo in shell-less culture was removed from the incubator and photographed with a microscope (Dino-Lite, AnMo Electronics Corporation, Torrance, CA) for documentation purposes. (b) Enlarged image marked by a box in (a) of representative imaged vessels. B-scan OCT images were obtained and the resulting data processed to calculate flow using analysis method 2 and by correcting for the Doppler angle measured via 3-D structural volumes for the same cross section. The resulting time-averaged flows are plotted against each other in panel c. B-scan OCT images were also obtained at A, B, and C to measure the time-averaged absolute flow before and after bifurcations. The corresponding flows are shown in panel d. Finally, vessels were imaged at two different positions (B and B’) to confirm consistent time-averaged flow measurements at different vessel positions and orientations. The resulting flows are represented in panel e. (f) A representative pulsatile flow rate is plotted over 8 heart cycles.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

F=ΔS S V trans .
V A = v n A ,
V B = v n B
V A V B = v ( n A n B )= v Δn , or
V A V B = V trans 2sin( θ ),
F= ΔS 2sin( θ ) S ( V A V B ) ΔS 2sin( θ ) ( S A V A S B V B ).
F=ΔS S V trans =S V trans ¯ = S 2sin( θ ) ( V A ¯ V B ¯ )
F=ΔS S V trans =ΔStanα S V dopp
F A =ΔStan( α+θ ) S A V A ,
F B =ΔStan( αθ ) S B V B
tan( α+θ )= F A ΔS S A V A ,
tan( αθ )= F B ΔS S B V B
tan( 2θ )= tan( α+θ )tan( αθ ) 1+tan( α+θ )tan( αθ ) = F ΔS S A V A F ΔS S B V B 1+ F ΔS S A V A F ΔS S B V B .
F 2 +( ΔS S A V A ΔS S B V B tan( 2θ ) )F+( ΔS S A V A )( ΔS S B V B )=0.
F= B± B 2 4C 2
B=( ΔS S A V A ΔS S B V B tan( 2θ ) )
C=( ΔS S A V A )( ΔS S B V B ).

Metrics