Abstract

The detection of thermoelastic displacement by differential phase optical coherence tomography (DP-OCT) was analytically evaluated for identifying atherosclerotic plaques. Analytical solutions were developed to understand the dynamics of physical distribution of point hear sources during/after laser irradiation on thermoelastic responses of MION-injected tissue. Both analytical and experimental results demonstrated a delayed peak displacement along with slow decay after laser pulse due to heterogeneous distribution of the point heat sources. Detailed description of the heat sources in tissue as well as integration of a scanning mirror can improve computational accuracy as well as clinical applicability of DP-OCT for diagnosing vulnerable plaque.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Tyagi, “Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells,” Am. J. Physiol. 274(2 Pt 1), C396–C405 (1998).
    [PubMed]
  2. S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
    [Crossref] [PubMed]
  3. W. J. Rogers and P. Basu, “Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging,” Atherosclerosis 178(1), 67–73 (2005).
    [Crossref] [PubMed]
  4. S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
    [Crossref] [PubMed]
  5. M. A. Pulido, D. J. Angiolillo, and M. A. Costa, “Imaging of atherosclerotic plaque,” Int. J. Cardiovasc. Imaging 20(6), 553–559 (2004).
    [Crossref] [PubMed]
  6. F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
    [Crossref] [PubMed]
  7. P. Libby, “Inflammation in atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 32(9), 2045–2051 (2012).
    [Crossref] [PubMed]
  8. P. Libby, “Vascular biology of atherosclerosis: overview and state of the art,” Am. J. Cardiol. 91(3), 3–6 (2003).
    [Crossref] [PubMed]
  9. S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
    [Crossref] [PubMed]
  10. J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
    [Crossref] [PubMed]
  11. J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology 18(3), 035504 (2007).
    [Crossref] [PubMed]
  12. S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
    [Crossref] [PubMed]
  13. S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
    [Crossref] [PubMed]
  14. J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
    [Crossref] [PubMed]
  15. M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
    [Crossref] [PubMed]
  16. J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
    [Crossref] [PubMed]
  17. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [Crossref] [PubMed]
  18. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35(5), 700–702 (2010).
    [Crossref] [PubMed]
  19. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [Crossref] [PubMed]
  20. B. Bonnemain, “Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review,” J. Drug Target. 6(3), 167–174 (1998).
    [Crossref] [PubMed]
  21. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
    [Crossref] [PubMed]
  22. T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
    [Crossref] [PubMed]
  23. D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25(4), 227–229 (2000).
    [Crossref] [PubMed]
  24. K. Seo and T. Mura, “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains,” J. Appl. Mech. 46(3), 568–572 (1979).
    [Crossref]
  25. J. H. Davies, “Elastic Field in a Semi-Infinite Solid due to Thermal Expansion or a Coherently Misfitting Inclusion,” J. Appl. Mech. 70(5), 655–660 (2003).
    [Crossref]
  26. R. D. Mindlin and D. H. Cheng, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Mech. 21, 931–933 (1950).
  27. J. N. Goodiee, “XCVII. On the integration of the thermo-elastic equations,” in Philosophical Magazine Series 7(Taylor & Francis, 1937), pp. 1017–1032.
  28. S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol. 123(3), 479–485 (2001).
    [Crossref]
  29. L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett. 23(6), 409–411 (1998).
    [Crossref] [PubMed]
  30. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21(1), 53–58 (2004).
    [Crossref] [PubMed]
  31. F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
    [Crossref] [PubMed]
  32. R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
    [PubMed]

2012 (1)

P. Libby, “Inflammation in atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 32(9), 2045–2051 (2012).
[Crossref] [PubMed]

2010 (1)

2008 (3)

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[Crossref] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

2007 (1)

J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology 18(3), 035504 (2007).
[Crossref] [PubMed]

2006 (1)

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

2005 (1)

W. J. Rogers and P. Basu, “Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging,” Atherosclerosis 178(1), 67–73 (2005).
[Crossref] [PubMed]

2004 (3)

M. A. Pulido, D. J. Angiolillo, and M. A. Costa, “Imaging of atherosclerotic plaque,” Int. J. Cardiovasc. Imaging 20(6), 553–559 (2004).
[Crossref] [PubMed]

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21(1), 53–58 (2004).
[Crossref] [PubMed]

2003 (6)

J. H. Davies, “Elastic Field in a Semi-Infinite Solid due to Thermal Expansion or a Coherently Misfitting Inclusion,” J. Appl. Mech. 70(5), 655–660 (2003).
[Crossref]

P. Libby, “Vascular biology of atherosclerosis: overview and state of the art,” Am. J. Cardiol. 91(3), 3–6 (2003).
[Crossref] [PubMed]

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
[Crossref] [PubMed]

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[Crossref] [PubMed]

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

2002 (1)

S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
[Crossref] [PubMed]

2001 (3)

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
[Crossref] [PubMed]

S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol. 123(3), 479–485 (2001).
[Crossref]

2000 (2)

D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25(4), 227–229 (2000).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

1999 (1)

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[Crossref] [PubMed]

1998 (3)

S. C. Tyagi, “Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells,” Am. J. Physiol. 274(2 Pt 1), C396–C405 (1998).
[PubMed]

B. Bonnemain, “Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review,” J. Drug Target. 6(3), 167–174 (1998).
[Crossref] [PubMed]

L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett. 23(6), 409–411 (1998).
[Crossref] [PubMed]

1996 (1)

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

1994 (1)

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

1979 (1)

K. Seo and T. Mura, “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains,” J. Appl. Mech. 46(3), 568–572 (1979).
[Crossref]

1950 (1)

R. D. Mindlin and D. H. Cheng, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Mech. 21, 931–933 (1950).

Adler, D. C.

Aguinaldo, J. G.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Akkin, T.

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[Crossref] [PubMed]

Angiolillo, D. J.

M. A. Pulido, D. J. Angiolillo, and M. A. Costa, “Imaging of atherosclerotic plaque,” Int. J. Cardiovasc. Imaging 20(6), 553–559 (2004).
[Crossref] [PubMed]

Barkhausen, J.

J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
[Crossref] [PubMed]

Basu, P.

W. J. Rogers and P. Basu, “Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging,” Atherosclerosis 178(1), 67–73 (2005).
[Crossref] [PubMed]

Bogdanov, A.

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

Bonnemain, B.

B. Bonnemain, “Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review,” J. Drug Target. 6(3), 167–174 (1998).
[Crossref] [PubMed]

Brady, T. J.

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

Casscells, S. W.

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

Chen, M.

Chen, W.

Cheng, D. H.

R. D. Mindlin and D. H. Cheng, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Mech. 21, 931–933 (1950).

Cohen, D. W.

Condit, C.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Connolly, J. L.

Cornhill, J. F.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Corot, C.

S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
[Crossref] [PubMed]

Costa, M. A.

M. A. Pulido, D. J. Angiolillo, and M. A. Costa, “Imaging of atherosclerotic plaque,” Int. J. Cardiovasc. Imaging 20(6), 553–559 (2004).
[Crossref] [PubMed]

Coupland, S. E.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Davé, D. P.

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25(4), 227–229 (2000).
[Crossref] [PubMed]

Davies, J. H.

J. H. Davies, “Elastic Field in a Semi-Infinite Solid due to Thermal Expansion or a Coherently Misfitting Inclusion,” J. Appl. Mech. 70(5), 655–660 (2003).
[Crossref]

De Meyer, G. R.

S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
[Crossref] [PubMed]

Debatin, J. F.

J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
[Crossref] [PubMed]

S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
[Crossref] [PubMed]

Ebert, W.

J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
[Crossref] [PubMed]

Emelianov, S.

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Epstein, F. H.

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[Crossref] [PubMed]

Fallon, J. T.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Fayad, Z. A.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Feldman, M. D.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Fujimoto, J. G.

Fuster, V.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Gust, R.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Gutiérrez-Vega, J. C.

Heautot, J. F.

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

Herderick, E. E.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Heyer, C.

J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
[Crossref] [PubMed]

Huang, M.

Huang, S. W.

Huang, W.

Huber, R.

Itskovich, V. V.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[Crossref] [PubMed]

Kang, H. W.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[Crossref] [PubMed]

Katocs, A. S.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Keer, L. M.

S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol. 123(3), 479–485 (2001).
[Crossref]

Kim, J.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology 18(3), 035504 (2007).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Knaapen, M. W.

S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
[Crossref] [PubMed]

Kockx, M. M.

S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
[Crossref] [PubMed]

Kolb, S.

S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
[Crossref] [PubMed]

Kolodgie, F. D.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Kresse, M.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Largis, E. E.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Lee, H. C.

Lee, S. J.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Libby, P.

P. Libby, “Inflammation in atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 32(9), 2045–2051 (2012).
[Crossref] [PubMed]

P. Libby, “Vascular biology of atherosclerosis: overview and state of the art,” Am. J. Cardiol. 91(3), 3–6 (2003).
[Crossref] [PubMed]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[Crossref] [PubMed]

Litovsky, S.

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

Liu, S.

S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol. 123(3), 479–485 (2001).
[Crossref]

Madjid, M.

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

Mani, V.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Milner, T. E.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology 18(3), 035504 (2007).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

D. P. Davé and T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25(4), 227–229 (2000).
[Crossref] [PubMed]

Mindlin, R. D.

R. D. Mindlin and D. H. Cheng, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Mech. 21, 931–933 (1950).

Misselwitz, B.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Mondelblatt, A.

Mura, T.

K. Seo and T. Mura, “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains,” J. Appl. Mech. 46(3), 568–572 (1979).
[Crossref]

Naghavi, M.

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

Nelson, J. S.

J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology 18(3), 035504 (2007).
[Crossref] [PubMed]

Nossiff, N.

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

Oh, J.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology 18(3), 035504 (2007).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

Papisov, M. I.

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[Crossref] [PubMed]

Pulido, M. A.

M. A. Pulido, D. J. Angiolillo, and M. A. Costa, “Imaging of atherosclerotic plaque,” Int. J. Cardiovasc. Imaging 20(6), 553–559 (2004).
[Crossref] [PubMed]

Rodgers, M. J.

S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol. 123(3), 479–485 (2001).
[Crossref]

Rogers, W. J.

W. J. Rogers and P. Basu, “Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging,” Atherosclerosis 178(1), 67–73 (2005).
[Crossref] [PubMed]

Ross, R.

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[Crossref] [PubMed]

Ruehm, S. G.

S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
[Crossref] [PubMed]

Rylander, H. G.

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

Schaffer, B. K.

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

Schiffler, S.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

Schmitz, S. A.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Semmler, W.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Seo, K.

K. Seo and T. Mura, “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains,” J. Appl. Mech. 46(3), 568–572 (1979).
[Crossref]

Sirol, M.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Skala, M. C.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Telenkov, S. A.

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

Toussaint, J. F.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Tsai, T. H.

Tyagi, S. C.

S. C. Tyagi, “Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells,” Am. J. Physiol. 274(2 Pt 1), C396–C405 (1998).
[PubMed]

Van Langenhove, G.

S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
[Crossref] [PubMed]

Verheye, S.

S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
[Crossref] [PubMed]

Virmani, R.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Vogt, P.

S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
[Crossref] [PubMed]

Wagner, S.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Wang, Q.

S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol. 123(3), 479–485 (2001).
[Crossref]

Wang, Y.

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Wei, X.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[Crossref] [PubMed]

Weinmann, H. J.

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
[Crossref] [PubMed]

Weissleder, R.

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

Willerson, J. T.

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

Winterhalter, S.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Wolf, K. J.

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

Wrenn, S. M.

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Youn, J. I.

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

Yu, L.

Zarrabi, A.

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

Zhou, C.

Zhu, Z.

Am. J. Cardiol. (1)

P. Libby, “Vascular biology of atherosclerosis: overview and state of the art,” Am. J. Cardiol. 91(3), 3–6 (2003).
[Crossref] [PubMed]

Am. J. Physiol. (1)

S. C. Tyagi, “Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells,” Am. J. Physiol. 274(2 Pt 1), C396–C405 (1998).
[PubMed]

Arterioscler. Thromb. Vasc. Biol. (2)

P. Libby, “Inflammation in atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 32(9), 2045–2051 (2012).
[Crossref] [PubMed]

F. D. Kolodgie, A. S. Katocs, E. E. Largis, S. M. Wrenn, J. F. Cornhill, E. E. Herderick, S. J. Lee, and R. Virmani, “Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type,” Arterioscler. Thromb. Vasc. Biol. 16(12), 1454–1464 (1996).
[Crossref] [PubMed]

Atherosclerosis (1)

W. J. Rogers and P. Basu, “Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging,” Atherosclerosis 178(1), 67–73 (2005).
[Crossref] [PubMed]

Biophys. J. (1)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[Crossref] [PubMed]

Circulation (5)

S. Litovsky, M. Madjid, A. Zarrabi, S. W. Casscells, J. T. Willerson, and M. Naghavi, “Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma,” Circulation 107(11), 1545–1549 (2003).
[Crossref] [PubMed]

S. Verheye, G. R. De Meyer, G. Van Langenhove, M. W. Knaapen, and M. M. Kockx, “In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition,” Circulation 105(13), 1596–1601 (2002).
[Crossref] [PubMed]

S. G. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. F. Debatin, “Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits,” Circulation 103(3), 415–422 (2001).
[Crossref] [PubMed]

J. Barkhausen, W. Ebert, C. Heyer, J. F. Debatin, and H. J. Weinmann, “Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging,” Circulation 108(5), 605–609 (2003).
[Crossref] [PubMed]

M. Sirol, V. V. Itskovich, V. Mani, J. G. Aguinaldo, J. T. Fallon, B. Misselwitz, H. J. Weinmann, V. Fuster, J. F. Toussaint, and Z. A. Fayad, “Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging,” Circulation 109(23), 2890–2896 (2004).
[Crossref] [PubMed]

Int. J. Cardiovasc. Imaging (1)

M. A. Pulido, D. J. Angiolillo, and M. A. Costa, “Imaging of atherosclerotic plaque,” Int. J. Cardiovasc. Imaging 20(6), 553–559 (2004).
[Crossref] [PubMed]

Invest. Radiol. (1)

S. A. Schmitz, S. E. Coupland, R. Gust, S. Winterhalter, S. Wagner, M. Kresse, W. Semmler, and K. J. Wolf, “Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits,” Invest. Radiol. 35(8), 460–471 (2000).
[Crossref] [PubMed]

J. Appl. Mech. (3)

K. Seo and T. Mura, “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions With Uniform Dilatational Eigenstrains,” J. Appl. Mech. 46(3), 568–572 (1979).
[Crossref]

J. H. Davies, “Elastic Field in a Semi-Infinite Solid due to Thermal Expansion or a Coherently Misfitting Inclusion,” J. Appl. Mech. 70(5), 655–660 (2003).
[Crossref]

R. D. Mindlin and D. H. Cheng, “Thermoelastic Stress in the Semi-Infinite Solid,” J. Appl. Mech. 21, 931–933 (1950).

J. Drug Target. (1)

B. Bonnemain, “Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review,” J. Drug Target. 6(3), 167–174 (1998).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Tribol. (1)

S. Liu, M. J. Rodgers, Q. Wang, and L. M. Keer, “A Fast and Effective Method for Transient Thermoelastic Displacement Analyses,” J. Tribol. 123(3), 479–485 (2001).
[Crossref]

Lasers Surg. Med. (2)

T. Akkin, D. P. Davé, J. I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33(4), 219–225 (2003).
[Crossref] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40(6), 415–421 (2008).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med. 340(2), 115–126 (1999).
[Crossref] [PubMed]

Nano Lett. (1)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[Crossref] [PubMed]

Nanotechnology (2)

J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology 17(16), 4183–4190 (2006).
[Crossref] [PubMed]

J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology 18(3), 035504 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Radiology (2)

R. Weissleder, J. F. Heautot, B. K. Schaffer, N. Nossiff, M. I. Papisov, A. Bogdanov, and T. J. Brady, “MR lymphography: study of a high-efficiency lymphotrophic agent,” Radiology 191(1), 225–230 (1994).
[PubMed]

S. A. Schmitz, S. Winterhalter, S. Schiffler, R. Gust, S. Wagner, M. Kresse, S. E. Coupland, W. Semmler, and K. J. Wolf, “USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits,” Radiology 221(1), 237–243 (2001).
[Crossref] [PubMed]

Other (1)

J. N. Goodiee, “XCVII. On the integration of the thermo-elastic equations,” in Philosophical Magazine Series 7(Taylor & Francis, 1937), pp. 1017–1032.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Surface displacement of semi-infinite half space insulating from point elastic potential: (a) thermoelastic displacement due to instantaneous heating of point heat source and (b) group of point heat sources

Fig. 2
Fig. 2

Measurement of thermoelastic displacements induced by 532-nm laser irradiation: (a) DP-OCT setup consisting of optical semiconductor amplifier light source (LS), lens (L), rapid scanning optical delay (RSOD) line, phase modulator (PM), mirror (M), calcite prism (CP), grating, (G), detector (D), and Wollaston prisms (W) and (b) detailed description of sample geometry indicating two separated locations (glass-air and air-artery boundaries)

Fig. 3
Fig. 3

Simulation results of normalized thermoelastic surface displacement due to pulsed heating (pulse duration = 50 ms) of point heat source in semi-infinite medium at (a) various depths with fixed radius (r = 0, origin) and (b) various radial positions away from detection point at fixed depth (z = 5 μm)

Fig. 4
Fig. 4

Simulation of normalized thermoelastic displacements due to pulsed laser irradiation (100 ms duration) in semi-infinite medium: (a) homogeneously distributed point heat sources with 5 μm intervals, (b) heterogeneously distributed heat sources with detection point above group of heat sources, and (c) heterogeneously distributed sources with detection point 300-μm distant from group of heat sources

Fig. 5
Fig. 5

Thermoelastic surface displacements of rabbit arteries in response to 532-nm pulsed laser irradiation (100 ms duration)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

u= 1 4π ( φ+ 2 φ 2 )
2 =( 34ν )+2z( /z )4(1v) k ^ 2 z
u 3 ( x,y,0,t )= α( 1+v ) π 0 ΔT( ξ ^ ,t ) × ξ 3 ( ( x ξ 1 ) 2 + ( y ξ 2 ) 2 + ξ 3 2 ) 3/2 d ξ 1 d ξ 2 d ξ 3
ΔT( ξ ^ ,t )= 1 8 ( πDt ) 3/2 Q ρ C p exp( ( c 2 + ξ 1 2 + ξ 2 2 + ξ 3 2 ) 4Dt )cosh( ξ 3 c 2Dt )
u 3 ( x,y,0,t;(0,0,c) )= α( 1+v ) 4π ( πDt ) 3/2 Q ρ C p exp( c 2 4Dt ) 0 cosh( ξ 3 c 2Dt )exp( ξ 3 2 4Dt )d ξ 3 × ξ 3 ( ( x ξ 1 ) 2 + ( y ξ 2 ) 2 + ξ 3 2 ) 3/2 exp( ( ξ 1 2 + ξ 2 2 ) 4Dt )d ξ 1 d ξ 2
u 3 ( k,0,t;(0,c) )= α( 1+v )Q ρ C p [ exp( 2πkc )erfc( 2πk Dt c/ 2 Dt ) +exp( 2πkc )erfc( 2πk Dt +c/ 2 Dt ) ]
u 3 ( r,0,t;(0,c) )=IHT[ u 3 ( k,0,t ) ]= 0 2π u 3 ( k,0,t ) J o ( 2πkr )k dk
u 3 ( r,0,t t p ;(0,c) )=IHT[ α( 1+v ) ρ C p 0 t Q ˙ { exp( 2πkc )erfc( 2πk Dt' c/ 2 Dt' ) +exp( 2πkc )erfc( 2πk Dt' +c/ 2 Dt' ) } dt' ]
u 3 ( r,0,t> t p ;(0,c) )=IHT[ α( 1+v ) ρ C p 0 t Q ˙ { exp( 2πkc )erfc( 2πk D(tt') c/ 2 D(tt') ) +exp( 2πkc )erfc( 2πk D(tt') +c/ 2 D(tt') ) } dt' ]
u 3 D ( r,0,t;( b i , c i ) )= i=1 N u 3 p ( r,0,t;( b i , c i ) )

Metrics