Abstract

We present the development of a source of deep-red radiation for photoacoustic imaging. This source, which is based on two cascaded wavelength conversion processes in aperiodically poled lithium niobate, emits 10 nanosecond pulses of over 500 µJ at 710 nm. Photoacoustic images were obtained from phantoms designed to mimic the optical and acoustic properties of oral tissue. Results indicate this device is a viable source of optical pulses for photoacoustic applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Photoacoustic imaging of prostate brachytherapy seeds

Jimmy L. Su, Richard R. Bouchard, Andrei B. Karpiouk, John D. Hazle, and Stanislav Y. Emelianov
Biomed. Opt. Express 2(8) 2243-2254 (2011)

Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization

Yi Yang, Xiang Li, Tianheng Wang, Patrick D. Kumavor, Andres Aguirre, Kirk K. Shung, Qifa Zhou, Melinda Sanders, Molly Brewer, and Quing Zhu
Biomed. Opt. Express 2(9) 2551-2561 (2011)

3D-visual laser-diode-based photoacoustic imaging

Lvming Zeng, Guodong Liu, Diwu Yang, and Xuanrong Ji
Opt. Express 20(2) 1237-1246 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, V., Wu, H., Biomedical optics: principles and imaging (Wiley-Interscience, Hoboken, N.J., 2007).
  2. S. Y. Emelianov, S. R. A. A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. W. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and Applications of Combined Ultrasound, Elasticity, and Photoacoustic Imaging,” Proceedings of the 2006 Ultrasonics Symposium.
  3. J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
    [Crossref]
  4. V. E. Gusev and A. A. Karabutov, Laser optoacoustics (American Institute of Physics, New York, 1993).
  5. “American National Standard for the Safe Use Lasers in the Health Care Environment,” (Laser Institute of America ANSI Z136.3, 2007).
  6. T. Kartaloglu, Z. G. Figen, and O. Aytur, “Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate,” J. Opt. Soc. Am. B 20(2), 343–350 (2003).
    [Crossref]
  7. A. H. Norton and C. M. de Sterke, “Aperiodic 1-dimensional structures for quasi-phase matching,” Opt. Express 12(5), 841–846 (2004).
    [Crossref] [PubMed]
  8. M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B 103(1), 99–106 (2011).
    [Crossref]
  9. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  10. R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).
  11. J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
    [Crossref] [PubMed]
  12. K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
    [Crossref] [PubMed]
  13. K. A. Snook, T. R. Shrout, and K. K. Shung, “Development of high frequency annular arrays for medical imaging,” 2003 IEEE Ultrasonics Symposium (IEEE Cat. No.03CH37476), 865–868 vol.861.
    [Crossref]
  14. Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
    [Crossref] [PubMed]
  15. T. L. Szabo, Diagnostic Ultrasound Imaging (Elsevier Academic Press, Amsterdam; Boston, 2004).
  16. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
    [Crossref] [PubMed]
  17. R. C. Gonzalez and E. Woods Richard, Digital image processing (Prentice Hall, Upper Saddle River, N.J., 2008).

2011 (2)

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B 103(1), 99–106 (2011).
[Crossref]

2009 (1)

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

2004 (1)

2003 (2)

T. Kartaloglu, Z. G. Figen, and O. Aytur, “Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate,” J. Opt. Soc. Am. B 20(2), 343–350 (2003).
[Crossref]

J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
[Crossref] [PubMed]

2002 (2)

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).

1997 (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
[Crossref] [PubMed]

Alonso, F.

R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).

Alves, C. H. F.

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Arellanes, M. J. O.

R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).

Aytur, O.

Cannata, J. M.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
[Crossref] [PubMed]

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Chen, W. H.

J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
[Crossref] [PubMed]

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Cudney, R. S.

M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B 103(1), 99–106 (2011).
[Crossref]

R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).

de Sterke, C. M.

Figen, Z. G.

Fonseca, J.

R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).

Ho Chang, J.

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

Jo, J. A.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Jundt, D. H.

Kang, J.

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

Kartaloglu, T.

Kim, E.-K.

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

Marcu, L.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Meyer, R. J.

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Norton, A. H.

Park, J.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Rios, L. A.

R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).

Ritter, T. A.

J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
[Crossref] [PubMed]

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Robles-Agudo, M.

M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B 103(1), 99–106 (2011).
[Crossref]

Saroufeem, R. M. G.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Shung, K. K.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
[Crossref] [PubMed]

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Silverman, R. H.

J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
[Crossref] [PubMed]

Snook, K. A.

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Song, T.-K.

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

Stephens, D. N.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Sun, L.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Yoo, Y.

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

Young Kwak, J.

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

Zhao, J. Z.

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Appl. Phys. B (1)

M. Robles-Agudo and R. S. Cudney, “Multiple wavelength generation using aperiodically poled lithium niobate,” Appl. Phys. B 103(1), 99–106 (2011).
[Crossref]

Appl. Phys. Lett. (1)

J. Kang, E.-K. Kim, J. Young Kwak, Y. Yoo, T.-K. Song, and J. Ho Chang, “Optimal laser wavelength for photoacoustic imaging of breast microcalcifications,” Appl. Phys. Lett. 99(15), 153702 (2011).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003).
[Crossref] [PubMed]

K. A. Snook, J. Z. Zhao, C. H. F. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Rev. Mex. Fis. (1)

R. S. Cudney, L. A. Rios, M. J. O. Arellanes, F. Alonso, and J. Fonseca, “Fabrication of periodically polarised lithium niobate for nonlinear optics,” Rev. Mex. Fis. 48, 548–555 (2002).

Rev. Sci. Instrum. (1)

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. G. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009).
[Crossref] [PubMed]

Other (7)

T. L. Szabo, Diagnostic Ultrasound Imaging (Elsevier Academic Press, Amsterdam; Boston, 2004).

K. A. Snook, T. R. Shrout, and K. K. Shung, “Development of high frequency annular arrays for medical imaging,” 2003 IEEE Ultrasonics Symposium (IEEE Cat. No.03CH37476), 865–868 vol.861.
[Crossref]

R. C. Gonzalez and E. Woods Richard, Digital image processing (Prentice Hall, Upper Saddle River, N.J., 2008).

V. E. Gusev and A. A. Karabutov, Laser optoacoustics (American Institute of Physics, New York, 1993).

“American National Standard for the Safe Use Lasers in the Health Care Environment,” (Laser Institute of America ANSI Z136.3, 2007).

L. Wang, V., Wu, H., Biomedical optics: principles and imaging (Wiley-Interscience, Hoboken, N.J., 2007).

S. Y. Emelianov, S. R. A. A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. W. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and Applications of Combined Ultrasound, Elasticity, and Photoacoustic Imaging,” Proceedings of the 2006 Ultrasonics Symposium.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cascaded conversion from the pump wavelength (1.064 µm) to deep red (710 nm) using an APLN crystal. Vertical lines: aperiodic domain structure.

Fig. 2
Fig. 2

Experimental configuration for PA imaging using the APLN crystal.

Fig. 3
Fig. 3

Spectrum of the output red beam. Data taken at 25°C.

Fig. 4
Fig. 4

Ultrasound (a) and photoacoustic (b) images from a tissue phantom. The color maps indicate the detected ultrasound intensity in dBs. Only the areas where the graphite absorbers are present produce a signal with great contrast. The scattering centers at the surface of the phantom were originated by non-dissolved ink.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω r = ω p + ω s = 3 2 ω p .
Δ k OPO = k p 2 k s ,
Δ k SFG = k r k p k s ,
χ (2) ( Δk )= 0 L χ (2) (z)exp[ iΔkz ] dz.
f(z)=wcos(Δ k SFG z)+(1w)cos(Δ k OPO z),

Metrics