Abstract

A hybrid silicon-poly(dimethysiloxane) (PDMS) optofluidic platform for lab-on-a-chip applications is proposed. A liquid-core waveguide with a self-aligned solid-core waveguide and a microfluidic device are integrated with a multilayer approach, resulting in a three-dimensional device assembly. The optofluidic layer was fabricated with a hybrid silicon-polymer technology, whereas the microfluidic layer was fabricated with a soft lithography technique. The combination of different materials and fabrication processes allows a modular approach, enabling both the benefits from the high optical quality achievable with silicon technology and the low cost of polymer processing. The proposed chip has been tested for fluorescence measurements on Cy5 water solutions, demonstrating the possibility to obtain a limit of detection of 2.5 nM.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
    [Crossref] [PubMed]
  2. K. B. Mogensen and J. P. Kutter, “Optical detection in microfluidic systems,” Electrophoresis 30(S1Suppl 1), S92–S100 (2009).
    [Crossref] [PubMed]
  3. F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
    [Crossref] [PubMed]
  4. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2(3), 658–664 (2011).
    [Crossref] [PubMed]
  5. L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
    [Crossref] [PubMed]
  6. B. R. Watts, Z. Zhang, C.-Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
    [Crossref] [PubMed]
  7. K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
    [Crossref] [PubMed]
  8. Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).
  9. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
    [Crossref] [PubMed]
  10. M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83(4-9), 1291–1293 (2006).
    [Crossref]
  11. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
    [Crossref] [PubMed]
  12. C. Dongre, J. van Weerd, N. Bellini, R. Osellame, G. Cerullo, R. van Weeghel, H. J. W. M. Hoekstra, and M. Pollnau, “Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip,” Biomed. Opt. Express 1(2), 729–735 (2010).
    [Crossref] [PubMed]
  13. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
    [Crossref] [PubMed]
  14. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
    [Crossref]
  15. G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett. 37(24), 5115–5117 (2012).
    [Crossref] [PubMed]
  16. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics 4(1-2), 3–16 (2008).
    [Crossref] [PubMed]
  17. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
    [Crossref] [PubMed]
  18. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40(34), 6246–6251 (2001).
    [Crossref] [PubMed]
  19. H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B Chem. 92(3), 315–325 (2003).
    [Crossref]
  20. L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
    [Crossref] [PubMed]
  21. A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express 2(2), 271–277 (2011).
    [Crossref] [PubMed]
  22. K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
    [Crossref]
  23. K. Kalkandjiev, R. Zengerle, and P. Koltay, “Hybrid fabrication of microfluidic chips based on COC, silicon and TMMF dry resist,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 400–403.
    [Crossref]
  24. J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
    [Crossref] [PubMed]
  25. G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
    [Crossref]
  26. J. W. Parks, H. Cai, L. Zempoaltecatl, T. D. Yuzvinsky, K. Leake, A. R. Hawkins, and H. Schmidt, “Hybrid optofluidic integration,” Lab Chip, Advanced (2013).
  27. G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
    [Crossref]
  28. G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
    [Crossref]
  29. G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35(10), 1584–1586 (2010).
    [Crossref] [PubMed]
  30. R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
    [Crossref]
  31. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
    [Crossref]
  32. J. Wang, M. Zheng, W. Wang, and Z. Li, “Optimal protocol for moulding PDMS with a PDMS master,” Chips & Tips (Lab on a Chip), 06 Jul 2010.
  33. A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
    [Crossref] [PubMed]
  34. F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
    [Crossref] [PubMed]
  35. K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
    [Crossref] [PubMed]
  36. R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip 6(8), 1095–1098 (2006).
    [Crossref] [PubMed]

2012 (4)

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
[Crossref]

B. R. Watts, Z. Zhang, C.-Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
[Crossref] [PubMed]

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett. 37(24), 5115–5117 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (4)

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35(10), 1584–1586 (2010).
[Crossref] [PubMed]

C. Dongre, J. van Weerd, N. Bellini, R. Osellame, G. Cerullo, R. van Weeghel, H. J. W. M. Hoekstra, and M. Pollnau, “Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip,” Biomed. Opt. Express 1(2), 729–735 (2010).
[Crossref] [PubMed]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

2009 (2)

K. B. Mogensen and J. P. Kutter, “Optical detection in microfluidic systems,” Electrophoresis 30(S1Suppl 1), S92–S100 (2009).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

2008 (4)

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[Crossref] [PubMed]

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

2007 (3)

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

2006 (5)

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83(4-9), 1291–1293 (2006).
[Crossref]

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip 6(8), 1095–1098 (2006).
[Crossref] [PubMed]

2005 (3)

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[Crossref]

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[Crossref]

2004 (1)

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[Crossref]

2003 (2)

2002 (1)

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

2001 (1)

Andersson, H.

H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B Chem. 92(3), 315–325 (2003).
[Crossref]

Baeumner, A.

Banerjee, A.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[Crossref] [PubMed]

Barber, J. P.

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[Crossref]

Beecher, S.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Bellini, N.

Bellouard, Y.

Bernini, R.

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett. 37(24), 5115–5117 (2012).
[Crossref] [PubMed]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35(10), 1584–1586 (2010).
[Crossref] [PubMed]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[Crossref]

Bradley, D. D. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Campopiano, S.

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[Crossref]

Cao, X.

Cerullo, G.

C. Dongre, J. van Weerd, N. Bellini, R. Osellame, G. Cerullo, R. van Weeghel, H. J. W. M. Hoekstra, and M. Pollnau, “Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip,” Biomed. Opt. Express 1(2), 729–735 (2010).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Cornwell, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Deamer, D. W.

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Demello, A. J.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Demello, J. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

DeVoe, D. L.

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

Dongre, C.

C. Dongre, J. van Weerd, N. Bellini, R. Osellame, G. Cerullo, R. van Weeghel, H. J. W. M. Hoekstra, and M. Pollnau, “Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip,” Biomed. Opt. Express 1(2), 729–735 (2010).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

El-Ali, J.

Fleger, M.

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83(4-9), 1291–1293 (2006).
[Crossref]

Friis, P.

Fu, C. Y.

R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip 6(8), 1095–1098 (2006).
[Crossref] [PubMed]

Gitlin, I.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Guo, Y.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Gutzweiler, L.

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Hawkins, A. R.

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[Crossref]

Hoekstra, H. J. W. M.

Hofmann, O.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Hoppe, K.

Huang, Y.

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35(10), 1584–1586 (2010).
[Crossref] [PubMed]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Hübner, J.

Huskens,

B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Irawan, R.

R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip 6(8), 1095–1098 (2006).
[Crossref] [PubMed]

Jenkins, M. H.

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

Kalkandjiev, K.

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Keeley, J.

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

Klotzkin, D.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[Crossref] [PubMed]

Koltay, P.

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Kosse, D.

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Kuswandi, B.

B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Kutter, J. P.

Leake, K. D.

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

Lee, C. S.

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

Lee, H. L. T.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Lee, K. S.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Lee, L. P.

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

Leistiko, O.

Lin, M.

Lipson, M.

Lunt, E. J.

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Measor, P.

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

Miyaki, K.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Mogensen, K. B.

Myers, F. B.

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

Nakagama, T.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Nakajima, H.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Neyer, A.

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83(4-9), 1291–1293 (2006).
[Crossref]

Ng, J. M. K.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Nitkowski, A.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Nuriman, J.

B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Osellame, R.

C. Dongre, J. van Weerd, N. Bellini, R. Osellame, G. Cerullo, R. van Weeghel, H. J. W. M. Hoekstra, and M. Pollnau, “Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip,” Biomed. Opt. Express 1(2), 729–735 (2010).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Pais, A.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[Crossref] [PubMed]

Papautsky, I.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[Crossref] [PubMed]

Persichetti, G.

Pollnau, M.

C. Dongre, J. van Weerd, N. Bellini, R. Osellame, G. Cerullo, R. van Weeghel, H. J. W. M. Hoekstra, and M. Pollnau, “Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip,” Biomed. Opt. Express 1(2), 729–735 (2010).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Quake, S. R.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[Crossref]

Raja, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Ram, R. J.

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

Ramponi, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Riegger, L.

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Rohrlack, T.

Rudenko, M. I.

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Sarro, P. M.

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35(10), 1584–1586 (2010).
[Crossref] [PubMed]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[Crossref]

Schaap, A.

Schmidt, H.

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[Crossref]

Shimosaka, T.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Squires, T. M.

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[Crossref]

Stroock, A. D.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Tay, C. M.

R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip 6(8), 1095–1098 (2006).
[Crossref] [PubMed]

Testa, G.

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
[Crossref]

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett. 37(24), 5115–5117 (2012).
[Crossref] [PubMed]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35(10), 1584–1586 (2010).
[Crossref] [PubMed]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Tjin, S. C.

R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip 6(8), 1095–1098 (2006).
[Crossref] [PubMed]

Uchiyama, K.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

van den Berg, A.

H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B Chem. 92(3), 315–325 (2003).
[Crossref]

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

van Weeghel, R.

van Weerd, J.

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Verboom, W.

B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Wang, X.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Watts, B. R.

Welsche, M.

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Whitesides, G. M.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Wolff, A.

Xu, C.-Q.

Yin, D.

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[Crossref]

Zengerle, R.

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Zeni, L.

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35(10), 1584–1586 (2010).
[Crossref] [PubMed]

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[Crossref]

Zhang, Z.

Zhao, Y.

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

Zhu, L.

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

B. Kuswandi, J. Nuriman, Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005).
[Crossref]

G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “Integrated silicon optofluidic ring resonator,” Appl. Phys. Lett. 97(13), 131110 (2010).
[Crossref]

Biomed. Opt. Express (4)

Electrophoresis (2)

K. B. Mogensen and J. P. Kutter, “Optical detection in microfluidic systems,” Electrophoresis 30(S1Suppl 1), S92–S100 (2009).
[Crossref] [PubMed]

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (3)

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Hybrid Silicon-PDMS optofluidic ARROW waveguide,” IEEE Photon. Technol. Lett. 24(15), 1307–1309 (2012).
[Crossref]

G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, “Liquid core ARROW waveguides by atomic layer deposition,” IEEE Photon. Technol. Lett. 22(9), 616–618 (2010).
[Crossref]

Y. Zhao, K. D. Leake, P. Measor, M. H. Jenkins, J. Keeley, H. Schmidt, and A. R. Hawkins, “Optimization of interface transmission between integrated solid core and optofluidic waveguides,” IEEE Photon. Technol. Lett. 24, 46–48 (2012).

J. Micromech. Microeng. (1)

K. Kalkandjiev, L. Riegger, D. Kosse, M. Welsche, L. Gutzweiler, R. Zengerle, and P. Koltay, “Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass,” J. Micromech. Microeng. 21(2), 025008 (2011).
[Crossref]

Lab Chip (10)

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

R. Irawan, C. M. Tay, S. C. Tjin, and C. Y. Fu, “Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications,” Lab Chip 6(8), 1095–1098 (2006).
[Crossref] [PubMed]

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[Crossref] [PubMed]

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

K. S. Lee, H. L. T. Lee, and R. J. Ram, “Polymer waveguide backplanes for optical sensor interfaces in microfluidics,” Lab Chip 7(11), 1539–1545 (2007).
[Crossref] [PubMed]

F. B. Myers and L. P. Lee, “Innovations in optical microfluidic technologies for point-of-care diagnostics,” Lab Chip 8(12), 2015–2031 (2008).
[Crossref] [PubMed]

L. Zhu, C. S. Lee, and D. L. DeVoe, “Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA,” Lab Chip 6(1), 115–120 (2006).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[Crossref] [PubMed]

Microelectron. Eng. (1)

M. Fleger and A. Neyer, “PDMS microfluidic chip with integrated waveguides for optical detection,” Microelectron. Eng. 83(4-9), 1291–1293 (2006).
[Crossref]

Microfluid Nanofluidics (1)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid Nanofluidics 4(1-2), 3–16 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Rev. Mod. Phys. (1)

T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[Crossref]

Sens. Actuators B Chem. (2)

R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004).
[Crossref]

H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sens. Actuators B Chem. 92(3), 315–325 (2003).
[Crossref]

Other (3)

K. Kalkandjiev, R. Zengerle, and P. Koltay, “Hybrid fabrication of microfluidic chips based on COC, silicon and TMMF dry resist,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 400–403.
[Crossref]

J. W. Parks, H. Cai, L. Zempoaltecatl, T. D. Yuzvinsky, K. Leake, A. R. Hawkins, and H. Schmidt, “Hybrid optofluidic integration,” Lab Chip, Advanced (2013).

J. Wang, M. Zheng, W. Wang, and Z. Li, “Optimal protocol for moulding PDMS with a PDMS master,” Chips & Tips (Lab on a Chip), 06 Jul 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Exploded view drawing of the proposed hybrid ARROW optofluidic platform with transverse section of (b) liquid h-ARROW and (c) solid h-ARROW. (d) Schematic of the assembled device.

Fig. 2
Fig. 2

(a) PDMS ridge, (b) soli-core h-ARROW.

Fig. 3
Fig. 3

(a) PMMA substrate with milled grooves; (b) thin PDMS layer with holes punched; (c) PMMA substrate with holed PDMS layer; (d) PDMS layer a after curing process; (e) layer a at the end of process.

Fig. 4
Fig. 4

Picture of the device during fabrication. Highlighted in the picture is the lack of adhesion due to the presence of unwanted air bubbles.

Fig. 5
Fig. 5

(a) CCD captured output intensity distribution. (b) Transmitted intensity versus waveguide length (symbol: experiment; line: exponential fit).

Fig. 6
Fig. 6

(a) Micro-mixer fabricated in the PMMA master by direct milling. (b) PDMS mold of PMMA master. (c) PDMS replica of PMMA master.

Fig. 7
Fig. 7

(a) Schematic and (b) photograph of the chip.

Fig. 8
Fig. 8

Fluorescence intensity measurements versus concentration of Cy5 in water.

Metrics