Abstract

We developed a high-resolution fluorescence microscope in which fluorescent materials are directly excited using a focused electron beam. Electron beam excitation enables detailed observations on the nanometer scale. Real-time live-cell observation is also possible using a thin film to separate the environment under study from the vacuum region required for electron beam propagation. In this study, we demonstrated observation of cellular components by autofluorescence excited with a focused electron beam and performed dynamic observations of intracellular granules. Since autofluorescence is associated with endogenous substances in cells, this microscope can also be used to investigate the intrinsic properties of organelles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Taylor and Y.-L. Wang, Methods in Cell Biology vol. 30 (Academic Press Inc., San Diego, 1989).
  2. M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
    [CrossRef] [PubMed]
  3. R. A. Gottlieb, J. Nordberg, E. Skowronski, and B. M. Babior, “Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification,” Proc. Natl. Acad. Sci. U.S.A.93(2), 654–658 (1996).
    [CrossRef] [PubMed]
  4. J. P. Y. Kao, “Practical aspects of measuring [Ca2+] with fluorescent indicators,” in Methods in Cell Biology vol. 40, R. Nuccitelli, ed. (Academic Press, Inc., San Diego, 1994).
  5. S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
    [CrossRef] [PubMed]
  6. M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev.11, 227–256 (2005).
    [CrossRef] [PubMed]
  7. M. De Mets, “Cathodoluminescence of organic chemicals,” in Principles and Techniques of Scanning Electron Microscopy vol. 2, M.A. Hayat, ed. (Van Nostrand Reinhold, NewYork, 1974).
  8. G. Nichols, “Applications of cathodoluminescence spectroscopy and imaging in the characterisation of pharmaceutical materials,” Eur. J. Pharm. Sci.45(1-2), 19–42 (2012).
    [CrossRef] [PubMed]
  9. P. J. Fisher, W. S. Wessels, A. B. Dietz, and F. G. Prendergast, “Enhanced biological cathodoluminescence,” Opt. Commun.281(7), 1901–1908 (2008).
    [CrossRef]
  10. J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
    [CrossRef] [PubMed]
  11. N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
    [CrossRef] [PubMed]
  12. H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
    [CrossRef] [PubMed]
  13. M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
    [CrossRef] [PubMed]
  14. O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
    [CrossRef] [PubMed]
  15. U. M. Mirsaidov, H. Zheng, Y. Casana, and P. Matsudaira, “Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy,” Biophys. J.102(4), L15–L17 (2012).
    [CrossRef] [PubMed]
  16. Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express20(5), 5629–5635 (2012).
    [CrossRef] [PubMed]
  17. D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Univ. Press, New York, 1995).
  18. W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express18(12), 12897–12902 (2010).
    [CrossRef] [PubMed]
  19. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
    [CrossRef]
  20. M. R. Phillips, O. Gelhausen, and E. M. Goldys, “Cathodoluminescence properties of zinc oxide nanoparticles,” Phys. Status Solidi201(2), 229–234 (2004).
    [CrossRef]
  21. Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
    [CrossRef]
  22. A. Rose, Advances in Electronics vol.1 (Academic Press Inc. New York, 1948).
  23. C. A. Schnaitman, “Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100,” J. Bacteriol.108(1), 545–552 (1971).
    [PubMed]
  24. D. B. Peckys and N. de Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett.11(4), 1733–1738 (2011).
    [CrossRef] [PubMed]
  25. T. Hürter, W. Bröcker, and K. A. Hossmann, “Evaluation of vasogenic edema in experimental brain tumors by cathodoluminescence and fluorescence microscopy,” Histochemistry72(2), 249–254 (1981).
    [CrossRef] [PubMed]
  26. T. Nakano, T. Fujimoto, H. Koike, and K. Ogawa, “Application of analytical color fluorescence electron microscopy to biomedical field: I. vitamin A ester in rat retina,” Acta Historiem. Cytochem.23(6), 753–767 (1990).
    [CrossRef]

2012 (3)

G. Nichols, “Applications of cathodoluminescence spectroscopy and imaging in the characterisation of pharmaceutical materials,” Eur. J. Pharm. Sci.45(1-2), 19–42 (2012).
[CrossRef] [PubMed]

U. M. Mirsaidov, H. Zheng, Y. Casana, and P. Matsudaira, “Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy,” Biophys. J.102(4), L15–L17 (2012).
[CrossRef] [PubMed]

Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express20(5), 5629–5635 (2012).
[CrossRef] [PubMed]

2011 (2)

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

D. B. Peckys and N. de Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett.11(4), 1733–1738 (2011).
[CrossRef] [PubMed]

2010 (3)

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express18(12), 12897–12902 (2010).
[CrossRef] [PubMed]

N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
[CrossRef] [PubMed]

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

2008 (1)

P. J. Fisher, W. S. Wessels, A. B. Dietz, and F. G. Prendergast, “Enhanced biological cathodoluminescence,” Opt. Commun.281(7), 1901–1908 (2008).
[CrossRef]

2007 (1)

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

2006 (1)

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
[CrossRef] [PubMed]

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev.11, 227–256 (2005).
[CrossRef] [PubMed]

2004 (2)

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

M. R. Phillips, O. Gelhausen, and E. M. Goldys, “Cathodoluminescence properties of zinc oxide nanoparticles,” Phys. Status Solidi201(2), 229–234 (2004).
[CrossRef]

2003 (1)

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

2000 (1)

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

1996 (1)

R. A. Gottlieb, J. Nordberg, E. Skowronski, and B. M. Babior, “Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification,” Proc. Natl. Acad. Sci. U.S.A.93(2), 654–658 (1996).
[CrossRef] [PubMed]

1990 (1)

T. Nakano, T. Fujimoto, H. Koike, and K. Ogawa, “Application of analytical color fluorescence electron microscopy to biomedical field: I. vitamin A ester in rat retina,” Acta Historiem. Cytochem.23(6), 753–767 (1990).
[CrossRef]

1981 (1)

T. Hürter, W. Bröcker, and K. A. Hossmann, “Evaluation of vasogenic edema in experimental brain tumors by cathodoluminescence and fluorescence microscopy,” Histochemistry72(2), 249–254 (1981).
[CrossRef] [PubMed]

1971 (1)

C. A. Schnaitman, “Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100,” J. Bacteriol.108(1), 545–552 (1971).
[PubMed]

Alfici, R.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Alves, H.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Anaby, D.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Antic, S.

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Babior, B. M.

R. A. Gottlieb, J. Nordberg, E. Skowronski, and B. M. Babior, “Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification,” Proc. Natl. Acad. Sci. U.S.A.93(2), 654–658 (1996).
[CrossRef] [PubMed]

Beery, R.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Bertram, F.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Boey, F. Y. C.

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Bröcker, W.

T. Hürter, W. Bröcker, and K. A. Hossmann, “Evaluation of vasogenic edema in experimental brain tumors by cathodoluminescence and fluorescence microscopy,” Histochemistry72(2), 249–254 (1981).
[CrossRef] [PubMed]

Casana, Y.

U. M. Mirsaidov, H. Zheng, Y. Casana, and P. Matsudaira, “Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy,” Biophys. J.102(4), L15–L17 (2012).
[CrossRef] [PubMed]

Chiba, A.

Christen, J.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Cohen, D.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Cohen, L. B.

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Cohen, O.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Czerniak, A.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

de Jonge, N.

D. B. Peckys and N. de Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett.11(4), 1733–1738 (2011).
[CrossRef] [PubMed]

N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
[CrossRef] [PubMed]

Demers, H.

N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
[CrossRef] [PubMed]

Dietz, A. B.

P. J. Fisher, W. S. Wessels, A. B. Dietz, and F. G. Prendergast, “Enhanced biological cathodoluminescence,” Opt. Commun.281(7), 1901–1908 (2008).
[CrossRef]

Drouin, D.

N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
[CrossRef] [PubMed]

Dworzak, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Falk, C. X.

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Fisher, P. J.

P. J. Fisher, W. S. Wessels, A. B. Dietz, and F. G. Prendergast, “Enhanced biological cathodoluminescence,” Opt. Commun.281(7), 1901–1908 (2008).
[CrossRef]

Forster, D.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Fu, S.

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Fujimoto, T.

T. Nakano, T. Fujimoto, H. Koike, and K. Ogawa, “Application of analytical color fluorescence electron microscopy to biomedical field: I. vitamin A ester in rat retina,” Acta Historiem. Cytochem.23(6), 753–767 (1990).
[CrossRef]

Gee, K. R.

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Gelhausen, O.

M. R. Phillips, O. Gelhausen, and E. M. Goldys, “Cathodoluminescence properties of zinc oxide nanoparticles,” Phys. Status Solidi201(2), 229–234 (2004).
[CrossRef]

Goldys, E. M.

M. R. Phillips, O. Gelhausen, and E. M. Goldys, “Cathodoluminescence properties of zinc oxide nanoparticles,” Phys. Status Solidi201(2), 229–234 (2004).
[CrossRef]

Gottlieb, R. A.

R. A. Gottlieb, J. Nordberg, E. Skowronski, and B. M. Babior, “Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification,” Proc. Natl. Acad. Sci. U.S.A.93(2), 654–658 (1996).
[CrossRef] [PubMed]

Haboeck, U.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Hoffmann, A.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Hofmann, D. M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Hossmann, K. A.

T. Hürter, W. Bröcker, and K. A. Hossmann, “Evaluation of vasogenic edema in experimental brain tumors by cathodoluminescence and fluorescence microscopy,” Histochemistry72(2), 249–254 (1981).
[CrossRef] [PubMed]

Hürter, T.

T. Hürter, W. Bröcker, and K. A. Hossmann, “Evaluation of vasogenic edema in experimental brain tumors by cathodoluminescence and fluorescence microscopy,” Histochemistry72(2), 249–254 (1981).
[CrossRef] [PubMed]

Ilany, J.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Inami, W.

Iwamatsu, S.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

Jonas, E. A.

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Kaczmarek, L. K.

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Karasik, A.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Kawata, Y.

Kimura, E.

J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
[CrossRef] [PubMed]

Kitamura, S.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Koike, H.

T. Nakano, T. Fujimoto, H. Koike, and K. Ogawa, “Application of analytical color fluorescence electron microscopy to biomedical field: I. vitamin A ester in rat retina,” Acta Historiem. Cytochem.23(6), 753–767 (1990).
[CrossRef]

Koizumi, M.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Konyuba, Y.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

Kriegseis, W.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Lam, Y. W.

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Lau, H. M.

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Levit, S.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Lim, C. S.

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Lin, S.

Maruyama, Y.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Matsudaira, P.

U. M. Mirsaidov, H. Zheng, Y. Casana, and P. Matsudaira, “Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy,” Biophys. J.102(4), L15–L17 (2012).
[CrossRef] [PubMed]

Meyer, B. K.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Mio, K.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Mirsaidov, U. M.

U. M. Mirsaidov, H. Zheng, Y. Casana, and P. Matsudaira, “Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy,” Biophys. J.102(4), L15–L17 (2012).
[CrossRef] [PubMed]

Miyakawa, A.

Monici, M.

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev.11, 227–256 (2005).
[CrossRef] [PubMed]

Nakajima, K.

Nakano, T.

T. Nakano, T. Fujimoto, H. Koike, and K. Ogawa, “Application of analytical color fluorescence electron microscopy to biomedical field: I. vitamin A ester in rat retina,” Acta Historiem. Cytochem.23(6), 753–767 (1990).
[CrossRef]

Nawa, Y.

Nichols, G.

G. Nichols, “Applications of cathodoluminescence spectroscopy and imaging in the characterisation of pharmaceutical materials,” Eur. J. Pharm. Sci.45(1-2), 19–42 (2012).
[CrossRef] [PubMed]

Niitsuma, J.

J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
[CrossRef] [PubMed]

Nishiyama, H.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Nordberg, J.

R. A. Gottlieb, J. Nordberg, E. Skowronski, and B. M. Babior, “Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification,” Proc. Natl. Acad. Sci. U.S.A.93(2), 654–658 (1996).
[CrossRef] [PubMed]

Ogawa, K.

T. Nakano, T. Fujimoto, H. Koike, and K. Ogawa, “Application of analytical color fluorescence electron microscopy to biomedical field: I. vitamin A ester in rat retina,” Acta Historiem. Cytochem.23(6), 753–767 (1990).
[CrossRef]

Ogura, T.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Oikawa, H.

J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
[CrossRef] [PubMed]

Ono, A.

Peckys, D. B.

D. B. Peckys and N. de Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett.11(4), 1733–1738 (2011).
[CrossRef] [PubMed]

N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
[CrossRef] [PubMed]

Phillips, M. R.

M. R. Phillips, O. Gelhausen, and E. M. Goldys, “Cathodoluminescence properties of zinc oxide nanoparticles,” Phys. Status Solidi201(2), 229–234 (2004).
[CrossRef]

Poirier-Demers, N.

N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
[CrossRef] [PubMed]

Prendergast, F. G.

P. J. Fisher, W. S. Wessels, A. B. Dietz, and F. G. Prendergast, “Enhanced biological cathodoluminescence,” Opt. Commun.281(7), 1901–1908 (2008).
[CrossRef]

Rodina, A. V.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Sato, C.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Schnaitman, C. A.

C. A. Schnaitman, “Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100,” J. Bacteriol.108(1), 545–552 (1971).
[PubMed]

Schwartz, I.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Sekiguchi, T.

J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
[CrossRef] [PubMed]

Sensi, S. L.

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Shabtai, M.

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Skowronski, E.

R. A. Gottlieb, J. Nordberg, E. Skowronski, and B. M. Babior, “Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification,” Proc. Natl. Acad. Sci. U.S.A.93(2), 654–658 (1996).
[CrossRef] [PubMed]

Straßburg, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

Suga, M.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Sullivan, P. G.

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Terakawa, S.

Tok, A. I. Y.

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Ton-That, D.

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Ueda, T.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

Ushiki, T.

J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
[CrossRef] [PubMed]

Wachowiak, M.

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Watanabe, Y.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

Weiss, J. H.

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Wessels, W. S.

P. J. Fisher, W. S. Wessels, A. B. Dietz, and F. G. Prendergast, “Enhanced biological cathodoluminescence,” Opt. Commun.281(7), 1901–1908 (2008).
[CrossRef]

Wu, Y. L.

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Yoshiura, C.

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

Zecevic, D.

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Zeng, X. T.

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Zheng, H.

U. M. Mirsaidov, H. Zheng, Y. Casana, and P. Matsudaira, “Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy,” Biophys. J.102(4), L15–L17 (2012).
[CrossRef] [PubMed]

Zochowski, M.

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Acta Historiem. Cytochem. (1)

T. Nakano, T. Fujimoto, H. Koike, and K. Ogawa, “Application of analytical color fluorescence electron microscopy to biomedical field: I. vitamin A ester in rat retina,” Acta Historiem. Cytochem.23(6), 753–767 (1990).
[CrossRef]

Biol. Bull. (1)

M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, Y. W. Lam, S. Antic, and D. Zecevic, “Imaging membrane potential with voltage-sensitive dyes,” Biol. Bull.198(1), 1–21 (2000).
[CrossRef] [PubMed]

Biophys. J. (1)

U. M. Mirsaidov, H. Zheng, Y. Casana, and P. Matsudaira, “Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy,” Biophys. J.102(4), L15–L17 (2012).
[CrossRef] [PubMed]

Biotechnol. Annu. Rev. (1)

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev.11, 227–256 (2005).
[CrossRef] [PubMed]

Eur. J. Pharm. Sci. (1)

G. Nichols, “Applications of cathodoluminescence spectroscopy and imaging in the characterisation of pharmaceutical materials,” Eur. J. Pharm. Sci.45(1-2), 19–42 (2012).
[CrossRef] [PubMed]

Histochemistry (1)

T. Hürter, W. Bröcker, and K. A. Hossmann, “Evaluation of vasogenic edema in experimental brain tumors by cathodoluminescence and fluorescence microscopy,” Histochemistry72(2), 249–254 (1981).
[CrossRef] [PubMed]

J. Bacteriol. (1)

C. A. Schnaitman, “Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100,” J. Bacteriol.108(1), 545–552 (1971).
[PubMed]

J. Electron Microsc. (Tokyo) (1)

J. Niitsuma, H. Oikawa, E. Kimura, T. Ushiki, and T. Sekiguchi, “Cathodoluminescence investigation of organic materials,” J. Electron Microsc. (Tokyo)54(4), 325–330 (2005).
[CrossRef] [PubMed]

J. Struct. Biol. (1)

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol.172(2), 191–202 (2010).
[CrossRef] [PubMed]

Nano Lett. (1)

D. B. Peckys and N. de Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett.11(4), 1733–1738 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, “Surface modifications of ZnO quantum dots for bio-imaging,” Nanotechnology18(21), 215604 (2007).
[CrossRef]

Opt. Commun. (1)

P. J. Fisher, W. S. Wessels, A. B. Dietz, and F. G. Prendergast, “Enhanced biological cathodoluminescence,” Opt. Commun.281(7), 1901–1908 (2008).
[CrossRef]

Opt. Express (2)

Phys. Status Solidi (2)

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004).
[CrossRef]

M. R. Phillips, O. Gelhausen, and E. M. Goldys, “Cathodoluminescence properties of zinc oxide nanoparticles,” Phys. Status Solidi201(2), 229–234 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. A. Gottlieb, J. Nordberg, E. Skowronski, and B. M. Babior, “Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification,” Proc. Natl. Acad. Sci. U.S.A.93(2), 654–658 (1996).
[CrossRef] [PubMed]

S. L. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee, L. K. Kaczmarek, and J. H. Weiss, “Modulation of mitochondrial function by endogenous Zn2+ pools,” Proc. Natl. Acad. Sci. U.S.A.100(10), 6157–6162 (2003).
[CrossRef] [PubMed]

Thyroid (1)

O. Cohen, R. Beery, S. Levit, J. Ilany, I. Schwartz, M. Shabtai, D. Anaby, D. Cohen, R. Alfici, A. Czerniak, and A. Karasik, “Scanning electron microscopy of thyroid cells under fully hydrated conditions-a novel technique for a seasoned procedure: a brief observation,” Thyroid16(10), 997–1001 (2006).
[CrossRef] [PubMed]

Ultramicroscopy (2)

M. Suga, H. Nishiyama, Y. Konyuba, S. Iwamatsu, Y. Watanabe, C. Yoshiura, T. Ueda, and C. Sato, “The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas,” Ultramicroscopy111(12), 1650–1658 (2011).
[CrossRef] [PubMed]

N. de Jonge, N. Poirier-Demers, H. Demers, D. B. Peckys, and D. Drouin, “Nanometer-resolution electron microscopy through micrometers-thick water layers,” Ultramicroscopy110(9), 1114–1119 (2010).
[CrossRef] [PubMed]

Other (5)

D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Univ. Press, New York, 1995).

D. L. Taylor and Y.-L. Wang, Methods in Cell Biology vol. 30 (Academic Press Inc., San Diego, 1989).

J. P. Y. Kao, “Practical aspects of measuring [Ca2+] with fluorescent indicators,” in Methods in Cell Biology vol. 40, R. Nuccitelli, ed. (Academic Press, Inc., San Diego, 1994).

M. De Mets, “Cathodoluminescence of organic chemicals,” in Principles and Techniques of Scanning Electron Microscopy vol. 2, M.A. Hayat, ed. (Van Nostrand Reinhold, NewYork, 1974).

A. Rose, Advances in Electronics vol.1 (Academic Press Inc. New York, 1948).

Supplementary Material (1)

» Media 1: MOV (3911 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of live-cell imaging with direct electron beam excitation. Biological cells are cultured on a thin film, and the focused electron beam directly excites cathodoluminescence through the film. Because the film separates the vacuum region from an air or a liquid environment, live cells can be observed. The direct electron beam excitation permits nanoscale resolution beyond the diffraction limit of light.

Fig. 2
Fig. 2

Preparation of the culture dish used for the D-EXA microscope with a SiN membrane. First, a SiN membrane was fixed to the metal plate, reducing the charging effect of electron beam irradiation. The metal plate had a hole in its center through which the electron beam was passed to excite specimens. A glass dish with a hole larger than the SiN membrane was affixed to the metal plate for hold the culture medium during incubation and observation. Epoxy resin was used for all fixation procedures.

Fig. 3
Fig. 3

Observation results of 20-nm gold spheres. (a, b) Experimental set-up for the D-EXA and FE-SEM imaging. (c) Backscattered electron image of 20-nm gold spheres acquired with the D-EXA microscope through the SiN membrane. (d) Secondary electron image of 20-nm gold spheres acquired with FE-SEM. (e, f) Line profiles of individual particles indicated with arrows in (c) and (d). Each FWHM of fitting lines was approximately 63 nm and 18 nm.

Fig. 4
Fig. 4

Observation results of ZnO nanoparticles (<50 nm) (a) Secondary electron image of ZnO nanoparticles dispersed and dried on the SiN membrane. (b) Pseudocolor CL image of an isolated ZnO nanoparticle excited in aqueous solution using the D-EXA microscope. The ZnO particle is visible as a bright spot. The pixel size is about 4 nm and image size is 512 × 512 pixels. Scale bars in Fig. (a) and (b) show 100 nm and 200 nm, respectively. (c) Line profile of the ZnO nanoparticle in Fig. (b). The intensity distribution was averaged with the width of the line, 10 pixels in this analysis. Blue and red lines show raw data and the Gaussian fitting curve, respectively. The FWHM of the Gaussian fitting curve is about 57 nm. Thus, penetration of a SiN membrane with a thickness of 50 nm at an acceleration voltage of 5 kV indicated a probe size smaller than approximately 60 nm.

Fig. 5
Fig. 5

Observation results of intracellular granules in fixed HeLa cells in PBS solution. After incubation, the cells were fixed with 1% glutaraldehyde in PBS solution, and the specimen was observed without any staining. Scale bar shows 5 µm. (a) Phase-contrast image of HeLa cells. Intracellular granules were observed as small spots, as shown with the dark arrows. (b) Pseudocolor image of autofluorescence from HeLa cells excited using the electron beam. Intracellular granules observed in (a) appear as bright spots. Cell membranes also emit autofluorescence so that the cell outlines can be observed.

Fig. 6
Fig. 6

Observation results for cytoskeleton structures in fixed HeLa cells in PBS solution, without staining. Before observation, cells were fixed with a 1% glutaraldehyde solution and then treated with a 0.25% Triton X solution in PBS. Scale bar shows 5 µm. (a) Fluorescence image of fixed HeLa cells acquired using a conventional epifluorescence microscope under UV excitation. (b) Pseudocolor image of autofluorescence acquired using the D-EXA microscope. The area indicated by the red square in Fig. (a) was observed. Filamentous structures in the cytoskeleton, which could not be observed using the conventional fluorescence microscope, are observed clearly.

Fig. 7
Fig. 7

Time-series pseudocolor images indicating dynamic movement of intracellular granules acquired using the D-EXA microscope. (Media 1) The granules began to aggregate as the observations began, as shown in the dotted outlines in the images at 20 s and 680 s. The granules indicated with arrowheads and arrows are moving near the SiN substrate surface. The reduction in signal intensity is due to movement of the granules away from the substrate surface, because the electron beam was focused close to the surface. Scale bar shows 2 µm.

Metrics