Abstract

We report the development of a structured illumination microscopy instrument specifically designed for the requirements for high-area-throughput, optically-sectioned imaging of large, fluorescently-stained tissue specimens. The system achieves optical sectioning frame-rates of up to 33 Hz (and pixel sampling rates of up to 138.4 MHz), by combining a fast, ferroelectric spatial light modulator for pattern generation with the latest large-format, high frame-rate scientific CMOS camera technology. Using a 10X 0.45 NA objective and a 7 mm/sec scan stage, we demonstrate 4.4 cm2/min area-throughput rates in bright tissue-simulating phantoms, and 2 cm2/min area-throughput rates in thick, highly-absorbing, fluorescently-stained muscle tissue, with 1.3 μm lateral resolution. We demonstrate high-contrast, high-resolution imaging of a fluorescently-stained 30.4 cm2 bovine muscle specimen in 15 minutes comprising 7.55 gigapixels, demonstrating the feasibility of the approach for gigapixel imaging of large tissues in short timeframes, such as would be needed for intraoperative imaging of tumor resection specimens.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
    [CrossRef] [PubMed]
  2. L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
    [CrossRef] [PubMed]
  3. D. A. Levy and J. S. Jones, “Management of rising prostate-specific antigen after a negative biopsy,” Curr. Urol. Rep.12(3), 197–202 (2011).
    [CrossRef] [PubMed]
  4. O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
    [CrossRef] [PubMed]
  5. J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
    [PubMed]
  6. M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
    [CrossRef] [PubMed]
  7. J. Park, P. Mroz, M. R. Hamblin, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models,” J. Biomed. Opt.15(2), 026023 (2010).
    [CrossRef] [PubMed]
  8. S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
    [CrossRef] [PubMed]
  9. H. Makhlouf, A. R. Rouse, and A. F. Gmitro, “Dual modality fluorescence confocal and spectral-domain optical coherence tomography microendoscope,” Biomed. Opt. Express2(3), 634–644 (2011).
    [CrossRef] [PubMed]
  10. J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
    [CrossRef] [PubMed]
  11. J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
    [CrossRef] [PubMed]
  12. H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
    [CrossRef] [PubMed]
  13. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  14. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
    [CrossRef] [PubMed]
  15. D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
    [CrossRef] [PubMed]
  16. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods8(10), 811–819 (2011).
    [CrossRef] [PubMed]
  17. N. Hagen, L. Gao, and T. S. Tkaczyk, “Quantitative sectioning and noise analysis for structured illumination microscopy,” Opt. Express20(1), 403–413 (2012).
    [CrossRef] [PubMed]

2013 (6)

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

2012 (2)

N. Hagen, L. Gao, and T. S. Tkaczyk, “Quantitative sectioning and noise analysis for structured illumination microscopy,” Opt. Express20(1), 403–413 (2012).
[CrossRef] [PubMed]

M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
[CrossRef] [PubMed]

2011 (3)

D. A. Levy and J. S. Jones, “Management of rising prostate-specific antigen after a negative biopsy,” Curr. Urol. Rep.12(3), 197–202 (2011).
[CrossRef] [PubMed]

H. Makhlouf, A. R. Rouse, and A. F. Gmitro, “Dual modality fluorescence confocal and spectral-domain optical coherence tomography microendoscope,” Biomed. Opt. Express2(3), 634–644 (2011).
[CrossRef] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods8(10), 811–819 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Park, P. Mroz, M. R. Hamblin, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models,” J. Biomed. Opt.15(2), 026023 (2010).
[CrossRef] [PubMed]

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

2009 (1)

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

2008 (2)

L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
[CrossRef] [PubMed]

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
[CrossRef] [PubMed]

1997 (1)

Abeytunge, S.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

Barry, W. T.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Benveniste, A. P.

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Bjartell, A.

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Brown, J. Q.

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Bydlon, T. M.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Callaway, E. S.

M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
[CrossRef] [PubMed]

Chapkin, R. S.

M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
[CrossRef] [PubMed]

Coleman, J. A.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Contag, C. H.

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

Crawford, J. M.

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

de la Taille, A.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Ding, H.

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Dobbs, J. L.

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Eastham, J. A.

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Emberton, M.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Epstein, J. I.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Feng, Z.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Freedland, S. J.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Fu, H. L.

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

Gallagher, J.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Gao, L.

Geradts, J.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Giannarini, G.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Gmitro, A. F.

Gong, H.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Graefen, M.

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Guillonneau, B. D.

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Hagen, N.

Hamblin, M. R.

J. Park, P. Mroz, M. R. Hamblin, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models,” J. Biomed. Opt.15(2), 026023 (2010).
[CrossRef] [PubMed]

Hu, B.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Jacobs, L.

L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
[CrossRef] [PubMed]

Javid, M. P.

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

Jiang, T.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Jones, J. S.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

D. A. Levy and J. S. Jones, “Management of rising prostate-specific antigen after a negative biopsy,” Curr. Urol. Rep.12(3), 197–202 (2011).
[CrossRef] [PubMed]

Junker, M. K.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Juskaitis, R.

Karadaglic, D.

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
[CrossRef] [PubMed]

Karakiewicz, P. I.

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Kennedy, S. A.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Kibel, A. S.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Kirsch, D. G.

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

Krishnamurthy, S.

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Kuerer, H. M.

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Larson, B.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

Leigh, S. Y.

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

Levenson, R. M.

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

Levy, D. A.

D. A. Levy and J. S. Jones, “Management of rising prostate-specific antigen after a negative biopsy,” Curr. Urol. Rep.12(3), 197–202 (2011).
[CrossRef] [PubMed]

Li, A.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Li, Y.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

Liu, J. T.

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

Loewke, N. O.

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

Luo, Q.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Maitland, K. C.

M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
[CrossRef] [PubMed]

Makhlouf, H.

Mandella, M. J.

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

Mertz, J.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods8(10), 811–819 (2011).
[CrossRef] [PubMed]

Mito, J. K.

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

Montironi, R.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Montorsi, F.

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Mroz, P.

J. Park, P. Mroz, M. R. Hamblin, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models,” J. Biomed. Opt.15(2), 026023 (2010).
[CrossRef] [PubMed]

Mueller, J. L.

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

Neil, M. A. A.

Olsovsky, C. A.

M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
[CrossRef] [PubMed]

Park, J.

J. Park, P. Mroz, M. R. Hamblin, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models,” J. Biomed. Opt.15(2), 026023 (2010).
[CrossRef] [PubMed]

Peterson, G.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

Ploussard, G.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Rajadhyaksha, M.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

Ramanujam, N.

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Richards, L. M.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Richards-Kortum, R.

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Roobol, M. J.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Rouse, A. R.

Saldua, M. A.

M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
[CrossRef] [PubMed]

Scattoni, V.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Seltzer, E.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

Tkaczyk, T. S.

Toledo-Crow, R.

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

Ukimura, O.

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

Wilke, L. G.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Wilson, T.

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

Xu, D.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Yang, W.

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

J. Park, P. Mroz, M. R. Hamblin, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models,” J. Biomed. Opt.15(2), 026023 (2010).
[CrossRef] [PubMed]

Yossepowitch, O.

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

Yu, B.

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

Zeng, S.

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

Ann. Surg. Oncol. (1)

L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Curr. Urol. Rep. (1)

D. A. Levy and J. S. Jones, “Management of rising prostate-specific antigen after a negative biopsy,” Curr. Urol. Rep.12(3), 197–202 (2011).
[CrossRef] [PubMed]

Eur. Urol. (2)

O. Ukimura, J. A. Coleman, A. de la Taille, M. Emberton, J. I. Epstein, S. J. Freedland, G. Giannarini, A. S. Kibel, R. Montironi, G. Ploussard, M. J. Roobol, V. Scattoni, and J. S. Jones, “Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care,” Eur. Urol.63(2), 214–230 (2013).
[CrossRef] [PubMed]

O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. K. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, and Q. Luo, “Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device,” J. Biomed. Opt.18(6), 060503 (2013).
[CrossRef] [PubMed]

M. A. Saldua, C. A. Olsovsky, E. S. Callaway, R. S. Chapkin, and K. C. Maitland, “Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope,” J. Biomed. Opt.17(1), 016006 (2012).
[CrossRef] [PubMed]

J. Park, P. Mroz, M. R. Hamblin, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models,” J. Biomed. Opt.15(2), 026023 (2010).
[CrossRef] [PubMed]

S. Abeytunge, Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, and M. Rajadhyaksha, “Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue,” J. Biomed. Opt.18(6), 061227 (2013).
[CrossRef] [PubMed]

J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, and R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt.18(10), 106016 (2013).
[CrossRef] [PubMed]

Micron (1)

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
[CrossRef] [PubMed]

Nat. Methods (1)

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods8(10), 811–819 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

PLoS ONE (1)

H. L. Fu, J. L. Mueller, M. P. Javid, J. K. Mito, D. G. Kirsch, N. Ramanujam, and J. Q. Brown, “Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma,” PLoS ONE8(7), e68868 (2013).
[CrossRef] [PubMed]

Stud. Health Technol. Inform. (1)

J. T. Liu, N. O. Loewke, M. J. Mandella, S. Y. Leigh, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Real-time pathology through in vivo microscopy,” Stud. Health Technol. Inform.185, 235–264 (2013).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the ROS3 instrumentation and implementation for tissue surface imaging. The objective lens (OL) is positioned underneath the tissue sample, and is translated in the z-direction via a piezoelectric transducer. The tissue rests above the objective lens on a standard X-Y motorized microscope stage. ASL, aspheric condenser lens. PBS, polarizing beam splitter. P, clean-up polarizer. L1, L2, achromat tube lenses. DM, dichroic mirror. F1, bandpass excitation filter. F2, bandpass emission filter.

Fig. 2
Fig. 2

Full-width half-maximum (FWHM) of the measured and theoretical axial responses for incoherent SIM as a function of normalized spatial frequency.

Fig. 3
Fig. 3

Images of Phantom B taken with the ROS3 system. A-C are mosaics of the phantom, corresponding to an area of 9.1 x 9.1 mm2 (scale bar 1 mm), and D-F are zooms corresponding to the boxed regions in A-C (scale bar 50 μm). A) Non-sectioned image taken with uniform illumination. B) SIM image at 12.4 ms integration time (SIM frame-rate = 26.9 Hz). The total image acquisition time was 1.82 seconds, and the stage translation time was 9.8 seconds (11.62 seconds total scan time). White arrow is aligned with the striping artifact due to inexact timing between the SLM display sequence and end of the camera exposure. C) SIM image at 100 ms integration time (SIM frame-rate = 3.33 Hz). The total image acquisition time was 14.7 seconds, and the stage translation time was 9.8 seconds (24.5 seconds total scan time).

Fig. 4
Fig. 4

Single-frame (1.3 x 1.3 mm) images of Phantom B. A) Non-sectioned (standard wide-field) image at 80.6 Hz frame-rate. SIM-sectioned images at B) 26.9 Hz, C) 13.3 Hz, D) 6.7 Hz, and E) 3.3 Hz frame-rates. Scale bars = 100 μm. F) Average signal-to-background ratio (SBR) for each of the frame-rates calculated over 10 sequential images, computed using the ROI’s indicated in A. Error bars are ± one standard deviation. S1/B = SBR in artifact-free region, S2/B = SBR in region of horizontal banding artifact.

Fig. 5
Fig. 5

ROS3 mosaic of a 7.8 x 3.9 cm piece of bovine muscle stained with acridine orange (30.4 cm2 total area). The image comprises 1,800 individual SIM frames, each of which are 1.3 x 1.3 mm at 2048 x 2048 pixel resolution. The entire mosaic comprises 7.55 gigapixels, and was acquired in 15 minutes (9 minutes image acquisition time + 6 minutes stage translation time). This corresponds to an area throughput rate of 2 cm2/min at 100 ms integration time (3.3 Hz SIM frame-rate). Areas labeled (NO SIM) correspond to standard wide-field imaging for comparison purposes, to demonstrate the increased contrast provided by SIM. Individual nuclei are clearly resolved in the zoomed-in SIM images of areas E, F, and G (white arrow indicates single nucleus in G). Note: The file size of the upper raw 16-bit mosaic was 15 GB; all images were converted to a lower resolution JPG for inclusion in this manuscript.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I SIM = ( x 1 x 2 ) 2 + ( x 1 x 3 ) 2 + ( x 2 x 3 ) 2

Metrics