Abstract

Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Endoscopic probe optics for spectrally encoded confocal microscopy

DongKyun Kang, Robert W. Carruth, Minkyu Kim, Simon C. Schlachter, Milen Shishkov, Kevin Woods, Nima Tabatabaei, Tao Wu, and Guillermo J. Tearney
Biomed. Opt. Express 4(10) 1925-1936 (2013)

Comprehensive volumetric confocal microscopy with adaptive focusing

DongKyun Kang, Hongki Yoo, Priyanka Jillella, Brett E. Bouma, and Guillermo J. Tearney
Biomed. Opt. Express 2(6) 1412-1422 (2011)

Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis

Nima Tabatabaei, DongKyun Kang, Tao Wu, Minkyu Kim, Robert W. Carruth, John Leung, Jenny S Sauk, Wayne Shreffler, Qian Yuan, Aubrey Katz, Norman S Nishioka, and Guillermo J. Tearney
Biomed. Opt. Express 5(1) 197-207 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [Crossref] [PubMed]
  2. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
    [Crossref] [PubMed]
  3. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
    [Crossref] [PubMed]
  4. D. Kang, H. Yoo, P. Jillella, B. E. Bouma, and G. J. Tearney, “Comprehensive volumetric confocal microscopy with adaptive focusing,” Biomed. Opt. Express 2(6), 1412–1422 (2011).
    [Crossref] [PubMed]
  5. D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy,” Biomed. Opt. Express 4(10), 1925–1936 (2013).
    [Crossref] [PubMed]
  6. F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).
  7. A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
    [Crossref]
  8. M. G. Douali and J. D. Silver, “Self-optimised vision correction with adaptive spectacle lenses in developing countries,” Ophthalmic Physiol. Opt. 24(3), 234–241 (2004).
    [Crossref] [PubMed]
  9. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [Crossref]
  10. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
    [Crossref] [PubMed]
  11. F. S. Tsai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
    [Crossref] [PubMed]
  12. J. M. Jabbour, B. H. Malik, C. Olsovsky, R. Cuenca, S. Cheng, J. A. Jo, Y.-S. L. Cheng, J. M. Wright, and K. C. Maitland, “Optical axial scanning in confocal microscopy using an electrically tunable lens,” Biomed. Opt. Express 5(2), 645–652 (2014).
    [Crossref] [PubMed]
  13. B. F. Grewe, F. F. Voigt, M. van ’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).
    [Crossref] [PubMed]
  14. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18(10), 9945–9954 (2010).
    [Crossref] [PubMed]
  15. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
    [Crossref] [PubMed]
  16. D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
    [Crossref]
  17. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  18. M. Shen, C. Yamahata, and M. A. M. Gijs, “A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump,” J. Micromech. Microeng. 18(2), 025031 (2008).
    [Crossref]
  19. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
    [Crossref] [PubMed]
  20. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
    [Crossref] [PubMed]
  21. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  22. D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett. 32(9), 1102–1104 (2007).
    [Crossref] [PubMed]
  23. D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46(12), 123002 (2007).
    [Crossref]
  24. N. Tabatabaei, D. Kang, T. Wu, M. Kim, R. W. Carruth, J. Leung, J. S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N. S. Nishioka, and G. J. Tearney, “Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis,” Biomed. Opt. Express 5(1), 197–207 (2014).
    [Crossref] [PubMed]
  25. S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, “Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses,” Opt. Express 22(5), 6133–6146 (2014).
    [PubMed]

2014 (4)

2013 (2)

D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy,” Biomed. Opt. Express 4(10), 1925–1936 (2013).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

2011 (3)

2010 (2)

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18(10), 9945–9954 (2010).
[Crossref] [PubMed]

2009 (1)

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett. 32(9), 1102–1104 (2007).
[Crossref] [PubMed]

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46(12), 123002 (2007).
[Crossref]

2005 (3)

C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
[Crossref] [PubMed]

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

2004 (2)

M. G. Douali and J. D. Silver, “Self-optimised vision correction with adaptive spectacle lenses in developing countries,” Ophthalmic Physiol. Opt. 24(3), 234–241 (2004).
[Crossref] [PubMed]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12(10), 2138–2149 (2004).
[Crossref] [PubMed]

2003 (1)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

1998 (1)

Arianpour, A.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

Bachman, M.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Boudoux, C.

Bouma, B.

Bouma, B. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

D. Kang, H. Yoo, P. Jillella, B. E. Bouma, and G. J. Tearney, “Comprehensive volumetric confocal microscopy with adaptive focusing,” Biomed. Opt. Express 2(6), 1412–1422 (2011).
[Crossref] [PubMed]

D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett. 32(9), 1102–1104 (2007).
[Crossref] [PubMed]

G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
[Crossref] [PubMed]

Bourg-Heckly, G.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Carruth, R. W.

N. Tabatabaei, D. Kang, T. Wu, M. Kim, R. W. Carruth, J. Leung, J. S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N. S. Nishioka, and G. J. Tearney, “Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis,” Biomed. Opt. Express 5(1), 197–207 (2014).
[Crossref] [PubMed]

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy,” Biomed. Opt. Express 4(10), 1925–1936 (2013).
[Crossref] [PubMed]

Chau, F. S.

Chen, Z.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Cheng, S.

Cheng, Y.-S. L.

Cho, S. H.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

F. S. Tsai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[Crossref] [PubMed]

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Choi, S. T.

Christian, W.

Cuenca, R.

Delaney, P. M.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Divetia, A.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Dominique, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Douali, M. G.

M. G. Douali and J. D. Silver, “Self-optimised vision correction with adaptive spectacle lenses in developing countries,” Ophthalmic Physiol. Opt. 24(3), 234–241 (2004).
[Crossref] [PubMed]

Francis, C. S.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

Gallagher, K. A.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Gijs, M. A. M.

M. Shen, C. Yamahata, and M. A. M. Gijs, “A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump,” J. Micromech. Microeng. 18(2), 025031 (2008).
[Crossref]

Gora, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Grewe, B. F.

Hashimoto, K.

Helmchen, F.

Horgan, S.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

Hsieh, T.-H.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Iftimia, N.

Ishikawa, M.

Jabbour, J. M.

Jillella, P.

Jo, J. A.

Johnson, D.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

Kang, D.

Katz, A.

Kava, L. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Kiesslich, R.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Kim, M.

Kobrin, P.

Lachkar, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Lee, K.-S.

Leung, H. M.

Leung, J.

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

N. Tabatabaei, D. Kang, T. Wu, M. Kim, R. W. Carruth, J. Leung, J. S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N. S. Nishioka, and G. J. Tearney, “Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis,” Biomed. Opt. Express 5(1), 197–207 (2014).
[Crossref] [PubMed]

Li, G.-P.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Lin, C.-W.

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46(12), 123002 (2007).
[Crossref]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Lo, Y.-H.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

F. S. Tsai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[Crossref] [PubMed]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Maitland, K. C.

Malik, B. H.

McLaren, W. J.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Mintz, Y.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

Moreno-Swirc, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Narayanaswamy, S.

Neurath, M. F.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Nishioka, N. S.

N. Tabatabaei, D. Kang, T. Wu, M. Kim, R. W. Carruth, J. Leung, J. S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N. S. Nishioka, and G. J. Tearney, “Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis,” Biomed. Opt. Express 5(1), 197–207 (2014).
[Crossref] [PubMed]

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Oh, W.

Oku, H.

Olsovsky, C.

Park, S.-Y.

Polglase, A. L.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Qiao, W.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

Rosenberg, M.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Salaün, M.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Sauk, J. S.

N. Tabatabaei, D. Kang, T. Wu, M. Kim, R. W. Carruth, J. Leung, J. S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N. S. Nishioka, and G. J. Tearney, “Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis,” Biomed. Opt. Express 5(1), 197–207 (2014).
[Crossref] [PubMed]

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Schlachter, S. C.

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy,” Biomed. Opt. Express 4(10), 1925–1936 (2013).
[Crossref] [PubMed]

Seabury, C.

Seo, G. W.

Shaw, D.

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46(12), 123002 (2007).
[Crossref]

Shen, M.

M. Shen, C. Yamahata, and M. A. M. Gijs, “A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump,” J. Micromech. Microeng. 18(2), 025031 (2008).
[Crossref]

Shishkov, M.

Shreffler, W.

Silver, J. D.

M. G. Douali and J. D. Silver, “Self-optimised vision correction with adaptive spectacle lenses in developing countries,” Ophthalmic Physiol. Opt. 24(3), 234–241 (2004).
[Crossref] [PubMed]

Skinner, S. A.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Son, B. S.

Suter, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Tabatabaei, N.

Talamini, M.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

Tearney, G.

Tearney, G. J.

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

N. Tabatabaei, D. Kang, T. Wu, M. Kim, R. W. Carruth, J. Leung, J. S. Sauk, W. Shreffler, Q. Yuan, A. Katz, N. S. Nishioka, and G. J. Tearney, “Tethered confocal endomicroscopy capsule for diagnosis and monitoring of eosinophilic esophagitis,” Biomed. Opt. Express 5(1), 197–207 (2014).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy,” Biomed. Opt. Express 4(10), 1925–1936 (2013).
[Crossref] [PubMed]

D. Kang, H. Yoo, P. Jillella, B. E. Bouma, and G. J. Tearney, “Comprehensive volumetric confocal microscopy with adaptive focusing,” Biomed. Opt. Express 2(6), 1412–1422 (2011).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett. 32(9), 1102–1104 (2007).
[Crossref] [PubMed]

G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
[Crossref] [PubMed]

Thiberville, L.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Tsai, F. S.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

F. S. Tsai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008).
[Crossref] [PubMed]

Vacas-Jacques, P.

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

van ’t Hoff, M.

Vasko, B.

Vasko, J.

Vever-Bizet, C.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Voigt, F. F.

Webb, R. H.

White, W.

Woods, K.

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

D. Kang, R. W. Carruth, M. Kim, S. C. Schlachter, M. Shishkov, K. Woods, N. Tabatabaei, T. Wu, and G. J. Tearney, “Endoscopic probe optics for spectrally encoded confocal microscopy,” Biomed. Opt. Express 4(10), 1925–1936 (2013).
[Crossref] [PubMed]

Wright, J. M.

Wu, T.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yamahata, C.

M. Shen, C. Yamahata, and M. A. M. Gijs, “A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump,” J. Micromech. Microeng. 18(2), 025031 (2008).
[Crossref]

Yang, Q.

Yelin, D.

Yoo, H.

Yu, H.

Yuan, Q.

Yun, S.

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Zhang, J.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Zhou, G.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Biomed. Opt. Express (5)

Endoscopy Int. Open (1)

D. Kang, S. C. Schlachter, R. W. Carruth, M. Kim, T. Wu, N. Tabatabaei, P. Vacas-Jacques, M. Shishkov, K. Woods, J. S. Sauk, J. Leung, N. S. Nishioka, and G. J. Tearney, “Comprehensive confocal endomicroscopy of the esophagus in vivo,” Endoscopy Int. Open 2(03), E135–E140 (2014).
[Crossref]

Eur. Respir. J. (1)

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J. 33(5), 974–985 (2009).
[Crossref] [PubMed]

Gastrointest. Endosc. (1)

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15, 030504 (2010).

J. Micromech. Microeng. (1)

M. Shen, C. Yamahata, and M. A. M. Gijs, “A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump,” J. Micromech. Microeng. 18(2), 025031 (2008).
[Crossref]

Nat. Med. (2)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

M. G. Douali and J. D. Silver, “Self-optimised vision correction with adaptive spectacle lenses in developing countries,” Ophthalmic Physiol. Opt. 24(3), 234–241 (2004).
[Crossref] [PubMed]

Opt. Eng. (1)

D. Shaw and C.-W. Lin, “Design and analysis of an asymmetrical liquid-filled lens,” Opt. Eng. 46(12), 123002 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Other (1)

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A – Schematic of SECM probe optics with the miniature vari-focal objective lens. B – Schematic of the vari-focal objective lens.
Fig. 2
Fig. 2 A – 2D ray tracing layout of the vari-focal objective lens using ZEMAX at three different radii of curvature of PDMS membrane. The focal shift was 641 μm while maintaining diffraction-limited performance. B – RMS wavefront error dependence on the field angle for different radius of curvature of the PDMS membrane.
Fig. 3
Fig. 3 Mechanical structure and fabrication of vari-focal objective lens. A – exploded view of components of vari-focal objective lens; B – cross sectional view of assembled vari-focal objective lens; C – a photo of components; and D – a photo of the fully-assembled vari-focal objective lens adjacent to a penny for scale.
Fig. 4
Fig. 4 Axial performance of the vari-focal objective lens. A – an axial response curve at the focal length of 2.83 mm; and B – scatter plot showing the relationship between focal shift and axial resolution.
Fig. 5
Fig. 5 SECM image of a 1951 USAF resolution target. Scale bar = 50 μm.
Fig. 6
Fig. 6 Step responses of the vari-focal objective lens. black line - vari-focal objective lens; and blue line - vari-focal objective lens with a 1.52 m tube with an ID of 0.86 mm. ta and tb show the 10%-90% response times for the vari-focal objective lens w/o and w/ the 1.52 m tube.
Fig. 7
Fig. 7 SECM images of swine esophageal tissue obtained at multiple imaging depths by axially translating the SECM optics (A, C and E) and by changing water volume in the vari-focal objective lens (B, D and F). dotted regions – reflection artifacts originated from scratches on the FEP slip; circles – basal cell nuclei; and arrows – papillae. Size of each image = 1250 μm × 1250 μm.

Metrics