Abstract

Frequency domain near-infrared spectroscopy (FD-NIRS) is a non-invasive method for measuring optical absorption in the brain. Common data analysis procedures for FD-NIRS data assume the head is a semi-infinite, homogenous medium. This assumption introduces bias in estimates of absorption (μa), scattering (μ′s), tissue oxygen saturation (StO2), and total hemoglobin (HbT). Previous works have investigated the accuracy of recovered μa values under this assumption. The purpose of this study was to examine the accuracy of recovered StO2 and HbT values in FD-NIRS measurements of the neonatal brain. We used Monte Carlo methods to compute light propagation through a neonate head model in order to simulate FD-NIRS measurements at 690 nm and 830 nm. We recovered μa, μ′s, StO2, and HbT using common analysis procedures that assume a semi-infinite, homogenous medium and compared the recovered values to simulated values. Additionally, we characterized the effects of curvature via simulations on homogenous spheres of varying radius. Lastly, we investigated the effects of varying amounts of extra-axial fluid. Curvature induced underestimation of μa, μ′s, and HbT, but had minimal effects on StO2. For the morphologically normal neonate head model, the mean absolute percent errors (MAPE) of recovered μa values were 12% and 7% for 690 nm and 830 nm, respectively, when source-detector separation was at least 20 mm. The MAPE for recovered StO2 and HbT were 6% and 9%, respectively. Larger relative errors were observed (∼20–30%), especially as StO2 and HbT deviated from normal values. Excess CSF around the brain caused very large errors in μa, μ′s, and HbT, but had little effect on StO2.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cerebral time domain-NIRS: reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects

Giacomo Giacalone, Marta Zanoletti, Davide Contini, Rebecca Re, Lorenzo Spinelli, Luisa Roveri, and Alessandro Torricelli
Biomed. Opt. Express 8(11) 4987-5000 (2017)

Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult

Mathieu Dehaes, P. Ellen Grant, Danielle D. Sliva, Nadège Roche-Labarbe, Rudolph Pienaar, David A. Boas, Maria Angela Franceschini, and Juliette Selb
Biomed. Opt. Express 2(3) 552-567 (2011)

Evaluation of hyperspectral NIRS for quantitative measurements of tissue oxygen saturation by comparison to time-resolved NIRS

Matthew Kewin, Ajay Rajaram, Daniel Milej, Androu Abdalmalak, Laura Morrison, Mamadou Diop, and Keith St Lawrence
Biomed. Opt. Express 10(9) 4789-4802 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [Crossref] [PubMed]
  2. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
    [Crossref] [PubMed]
  3. J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
    [Crossref]
  4. J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
    [Crossref] [PubMed]
  5. M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).
  6. F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94, 237–244 (2008).
    [Crossref] [PubMed]
  7. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B. 11, 2128–2138 (1994).
    [Crossref]
  8. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte carlo simulations from neonate to adult,” Biomed. Opt. Express 2, 552–567 (2011).
    [Crossref] [PubMed]
  9. Q. Fang and D. A. Boas, “Monte carlo simulation of photon migration in 3d turbid media accelerated by graphics processing units,” Opt. Express 17, 20178 (2009).
    [Crossref] [PubMed]
  10. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
    [Crossref] [PubMed]
  11. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol. 43, 2465 (1998).
    [Crossref] [PubMed]
  12. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
    [Crossref] [PubMed]
  13. M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503 (1993).
    [Crossref] [PubMed]
  14. S. A. Prahl, “Optical absorption of hemoglobin,” (1999), http://omlc.ogi.edu/spectra/hemoglobin/ .
  15. S. A. Prahl, “Optical absorption of water,” (2012), http://omlc.ogi.edu/spectra/water/ .
  16. S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
    [Crossref]
  17. F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
    [Crossref]
  18. G. Nellhaus, “Head circumference from birth to eighteen years practical composite international and interracial graphs,” Pediatrics 41, 106–114 (1968).
    [PubMed]
  19. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
    [Crossref] [PubMed]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

2011 (2)

2009 (1)

2008 (2)

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94, 237–244 (2008).
[Crossref] [PubMed]

2007 (1)

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

2003 (1)

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

1999 (1)

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

1998 (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol. 43, 2465 (1998).
[Crossref] [PubMed]

1995 (1)

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

1994 (2)

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B. 11, 2128–2138 (1994).
[Crossref]

1993 (1)

M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503 (1993).
[Crossref] [PubMed]

1986 (1)

J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
[Crossref]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

1968 (1)

G. Nellhaus, “Head circumference from birth to eighteen years practical composite international and interracial graphs,” Pediatrics 41, 106–114 (1968).
[PubMed]

Arvin, K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Barbieri, B. B.

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

Boas, D. A.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte carlo simulations from neonate to adult,” Biomed. Opt. Express 2, 552–567 (2011).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte carlo simulation of photon migration in 3d turbid media accelerated by graphics processing units,” Opt. Express 17, 20178 (2009).
[Crossref] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

Bortfeld, H.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Carlucci, C.

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

Conti, D.

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol. 43, 2465 (1998).
[Crossref] [PubMed]

J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
[Crossref]

De La Torre, T.

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

Dehaes, M.

Delpy, D.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503 (1993).
[Crossref] [PubMed]

J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
[Crossref]

Diamond, S. G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Edwards, A. D.

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Elwell, C. E.

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol. 43, 2465 (1998).
[Crossref] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503 (1993).
[Crossref] [PubMed]

Fang, Q.

Fantini, S.

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B. 11, 2128–2138 (1994).
[Crossref]

Feng, T. C.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

Firbank, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503 (1993).
[Crossref] [PubMed]

Franceschini, M. A.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte carlo simulations from neonate to adult,” Biomed. Opt. Express 2, 552–567 (2011).
[Crossref] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B. 11, 2128–2138 (1994).
[Crossref]

Franceschini, M.-A.

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

Gilmore, J. H.

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Grant, P. E.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte carlo simulations from neonate to adult,” Biomed. Opt. Express 2, 552–567 (2011).
[Crossref] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Gratton, E.

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B. 11, 2128–2138 (1994).
[Crossref]

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503 (1993).
[Crossref] [PubMed]

IsgrO, G.

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

Jia, H.

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol. 43, 2465 (1998).
[Crossref] [PubMed]

Krishnamoorthy, K. K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Lemmers, P.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94, 237–244 (2008).
[Crossref] [PubMed]

Lin, W.

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Maier, J. S.

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

McCormick, D. C.

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Meek, J. H.

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Naulaers, G.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94, 237–244 (2008).
[Crossref] [PubMed]

Nellhaus, G.

G. Nellhaus, “Head circumference from birth to eighteen years practical composite international and interracial graphs,” Pediatrics 41, 106–114 (1968).
[PubMed]

Pienaar, R.

Ranucci, M.

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

Reynolds, E.

J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
[Crossref]

Roche-Labarbe, N.

Romitti, F.

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

Selb, J.

Shen, D.

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Shi, F.

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol. 43, 2465 (1998).
[Crossref] [PubMed]

Sliva, D. D.

Stewart, A. L.

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

Thaker, S.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Themelis, G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Townsend, J. P.

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Tromberg, B. J.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

Tsay, T. T.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

van Bel, F.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94, 237–244 (2008).
[Crossref] [PubMed]

Walker, S. A.

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

Wray, S.

J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
[Crossref]

Wu, G.

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Wyatt, J.

J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
[Crossref]

Wyatt, J. S.

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Yap, P.-T.

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Arch. Dis. Child. Fetal. Neonatal. Ed. (1)

J. H. Meek, C. E. Elwell, D. C. McCormick, A. D. Edwards, J. P. Townsend, A. L. Stewart, and J. S. Wyatt, “Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome,” Arch. Dis. Child. Fetal. Neonatal. Ed. 81, F110–F115 (1999).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

J. Opt. Soc. Am. A Opt. Image Sci. Vis. (1)

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2727–2741 (1994).
[Crossref] [PubMed]

J. Opt. Soc. Am. B. (1)

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B. 11, 2128–2138 (1994).
[Crossref]

Lancet (1)

J. Wyatt, D. Delpy, M. Cope, S. Wray, and E. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet 328, 1063–1066 (1986).
[Crossref]

Neonatology (1)

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94, 237–244 (2008).
[Crossref] [PubMed]

Neuroimage (1)

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

Opt. Eng. (1)

S. Fantini, B. B. Barbieri, E. Gratton, M.-A. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[Crossref]

Opt. Express (1)

Pediatr. Anesth. (1)

M. Ranucci, G. IsgrO, T. De La Torre, F. Romitti, D. Conti, and C. Carlucci, “Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients,” Pediatr. Anesth. 18, 1163–1169 (2008).

Pediatr. Res. (1)

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
[Crossref] [PubMed]

Pediatrics (1)

G. Nellhaus, “Head circumference from birth to eighteen years practical composite international and interracial graphs,” Pediatrics 41, 106–114 (1968).
[PubMed]

Phys. Med. Biol. (3)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol. 43, 2465 (1998).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503 (1993).
[Crossref] [PubMed]

PLOS ONE (1)

F. Shi, P.-T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, and D. Shen, “Infant brain atlases from neonates to 1-and 2-year-olds,” PLOS ONE 6, e18746 (2011).
[Crossref]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

Other (2)

S. A. Prahl, “Optical absorption of hemoglobin,” (1999), http://omlc.ogi.edu/spectra/hemoglobin/ .

S. A. Prahl, “Optical absorption of water,” (2012), http://omlc.ogi.edu/spectra/water/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Sample segmentation results. The layers from outer to inner are scalp (blue), skull (purple), cerebrospinal fluid (green), gray matter (yellow), and white matter (red). (b) The optical probe used to simulate data. The blue dot in the center was the source position, while the red dots were detector positions.
Fig. 2
Fig. 2 Recovered absorption (a–d) and scattering (e–h) coefficients for data simulated on homogenous spheres of varying radius. The solid and dashed lines show the simulated values for 690 nm and 830 nm, respectively. Source-detector separation increases with each column from left to right. Modulation frequency was 100 MHz.
Fig. 3
Fig. 3 Recovered StO2 (O’s) and HbT (X’s) values for data simulated on homogenous spheres of varying radius. The solid and dashed lines show the simulated values for StO2 and HbT, respectively. Source-detector separation increases with each column from left to right. Modulation frequency was 100 MHz.
Fig. 4
Fig. 4 Normalized partial pathlength of light through a neonate head model with 70% StO2 and 60 μM HbT as a function or source-detector distance for 690 nm (a) and 830 nm (b). Modulation frequency was 110 MHz.
Fig. 5
Fig. 5 Recovered absorption (a–d) and scattering (e–h) coefficients for data simulated on a neonate head model for varying StO2 and fixed HbT in the brain. The solid and dashed lines show the simulated values for 690 nm and 830 nm, respectively. Source-detector separation increases with each column from left to right. Modulation frequency was 100 MHz.
Fig. 6
Fig. 6 Recovered StO2 (O’s) and HbT (X’s) values for data simulated on neonate head model for varying StO2 and fixed HbT in the brain. The solid and dashed lines show the simulated values for StO2 and HbT, respectively. Source-detector separation increases with each column from left to right. Modulation frequency was 100 MHz.
Fig. 7
Fig. 7 Recovered absorption (a–d) and scattering (e–h) coefficients for data simulated on a neonate head model for varying HbT and fixed StO2 in the brain. The solid and dashed lines show the simulated values for 690 nm and 830 nm, respectively. Source-detector separation increases with each column from left to right. Modulation frequency was 100 MHz.
Fig. 8
Fig. 8 Recovered StO2 (O’s) and HbT (X’s) values for data simulated on neonate head model for varying HbT and fixed StO2 in the brain. The solid and dashed lines show the simulated values for StO2 and HbT, respectively. Source-detector separation increases with each column from left to right. Modulation frequency was 100 MHz.
Fig. 9
Fig. 9 Selected simulations showing the effects of varying modulation frequency. (a) Recovered StO2 for simulations with varying StO2 and fixed HbT in the brain. (b) Recovered HbT for simulations with varying HbT and fixed StO2 in the brain. (c) and (d) recovered μa values for 690 and 830 nm, respectively, for simulation of varying HbT and fixed StO2 in the brain. The points were plotted as box plots showing the distribution of recovered values due to Monte Carlo noise. The red horizontal lines indicate the target value that was simulated. Source-detector separtion was 25–40 mm.
Fig. 10
Fig. 10 The effects of increased CSF on recovered μa (a–d) and StO2/HbT (e–h). Source-detector separation increases with each column from left to right. Modulation frequency was 100 MHz.

Tables (3)

Tables Icon

Table 1 Optical properties of tissues; RI = refractive index.

Tables Icon

Table 2 The minimum percent error (MIN), maximum percent error (MAX), and mean absolute percent error (MAPE) for simulations with varying StO2 and fixed HbT.

Tables Icon

Table 3 The minimum percent error (MIN), maximum percent error (MAX), and mean absolute percent error (MAPE) for simulations with varying HbT and fixed StO2.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

c ψ = ψ theo / ψ slab
c Φ = Φ theo Φ slab ,
ψ cal = c ψ ψ
Φ cal = Φ + c Φ ,
ln ( ψ ρ 3 [ 1 + ρ ( 2 μ a D ) 1 / 2 V + + ρ 2 μ a D ( 1 + ( ω ν μ a ) 2 ) 1 / 2 ] 1 / 2 ) = ρ ( μ a 2 D ) 1 / 2 V + + F ψ
Φ + arctan [ ρ ( μ a 2 D ) 1 / 2 V 1 + ρ ( μ a 2 D ) 1 / 2 V + ] = ρ ( μ a 2 D ) 1 / 2 V + Φ 0 ,
V + = [ ( 1 + ( ω ν μ a ) 2 ) 1 / 2 + 1 ] 1 / 2
V = [ ( 1 + ( ω ν μ a ) 2 ) 1 / 2 1 ] 1 / 2 .
ln ( ψ ρ 2 ) = ρ ( μ a 2 D ) 1 / 2 V + + F ψ
Φ = ρ ( μ a 2 D ) 1 / 2 V + F Φ .
α = ( μ a 2 D ) 1 / 2 V +
φ = ( μ a 2 D ) 1 / 2 V ,
μ a = ω 2 ν ( φ α α φ )
μ s = α 2 φ 2 3 μ a μ a ,
μ a , λ = ε HbO 2 , λ [ HbO 2 ] + ε Hb , λ [ Hb ] + B ( λ ) .
u E h [ μ a , λ 1 B ( λ 1 ) μ a , λ 2 B ( λ 2 ) μ a , λ n B ( λ n ) ] = [ ε HbO 2 , λ 1 ε Hb , λ 1 ε HbO 2 , λ 2 ε Hb , λ 2 ε HbO 2 , λ n ε Hb , λ n ] [ [ HbO 2 ] [ Hb ] ] ,
h = ( E T E ) 1 E T u ,
[ HbT ] = [ HbO 2 ] + [ Hb ]
S t O 2 = [ HbO 2 ] / [ HbT ] × 100 % ,

Metrics