Abstract

Mueller matrices can be used as a powerful tool to probe qualitatively the microstructures of biological tissues. Certain transformation processes can provide new sets of parameters which are functions of the Mueller matrix elements but represent more explicitly the characteristic features of the sample. In this paper, we take the backscattering Mueller matrices of a group of tissues with distinctive structural properties. Using both experiments and Monte Carlo simulations, we demonstrate qualitatively the characteristic features of Mueller matrices corresponding to different structural and optical properties. We also calculate two sets of transformed polarization parameters using the Mueller matrix transformation (MMT) and Mueller matrix polar decomposition (MMPD) techniques. We demonstrate that the new parameters can separate the effects due to sample orientation and present quantitatively certain characteristic features of these tissues. Finally, we apply the transformed polarization parameters to the unstained human cervix cancerous tissues. Preliminary results show that the transformed polarization parameters can provide characteristic information to distinguish the cancerous and healthy tissues.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters

Chao He, Honghui He, Jintao Chang, Yang Dong, Shaoxiong Liu, Nan Zeng, Yonghong He, and Hui Ma
Biomed. Opt. Express 6(8) 2934-2945 (2015)

Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters

Minghao Sun, Honghui He, Nan Zeng, E. Du, Yihong Guo, Cheng Peng, Yonghong He, and Hui Ma
Appl. Opt. 53(14) 2949-2955 (2014)

Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope

Yang Dong, Ji Qi, Honghui He, Chao He, Shaoxiong Liu, Jian Wu, Daniel S. Elson, and Hui Ma
Biomed. Opt. Express 8(8) 3643-3655 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
    [Crossref] [PubMed]
  2. H. M. Ye, J. Xu, J. Freudenthal, and B. Kahr, “On the circular birefringence of polycrystalline polymers: polylactide,” J. Am. Chem. Soc. 133(35), 13848–13851 (2011).
    [Crossref] [PubMed]
  3. I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19(13), 12551–12561 (2011).
    [Crossref] [PubMed]
  4. B. Peng, T. Ding, and P. Wang, “Propagation of polarized light through textile material,” Appl. Opt. 51(26), 6325–6334 (2012).
    [Crossref] [PubMed]
  5. B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics, DOI: .
    [Crossref]
  6. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
    [Crossref] [PubMed]
  7. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
    [Crossref] [PubMed]
  8. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
    [Crossref] [PubMed]
  9. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
    [Crossref] [PubMed]
  10. H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
    [Crossref] [PubMed]
  11. M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
    [Crossref] [PubMed]
  12. H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
    [Crossref]
  13. E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
    [Crossref] [PubMed]
  14. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrix based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  15. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix images of colon tissue,” Biomed. Opt. Express 2(7), 1836–1851 (2011).
    [Crossref] [PubMed]
  16. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
    [Crossref] [PubMed]
  17. M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. Le Grand, G. Le Brun, B. Turlin, and B. Le Jeune, “Mueller matrix polarimetry for improved liver fibrosis diagnosis,” Opt. Lett. 37(6), 1061–1063 (2012).
    [Crossref] [PubMed]
  18. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2(6), 148–150 (1978).
    [Crossref] [PubMed]
  19. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
    [Crossref] [PubMed]
  20. D. H. Goldstein and R. A. Chipman, “Error analysis of a Mueller matrix polarimeter,” J. Opt. Soc. Am. A 7(4), 693–700 (1990).
    [Crossref]
  21. T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
    [Crossref] [PubMed]
  22. E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
    [Crossref] [PubMed]
  23. Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
    [Crossref] [PubMed]
  24. J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. (Oxford University Press, 1995), Fig. 6.3.
  25. R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
    [Crossref] [PubMed]
  26. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. R. Antonelli, and A. D. Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21(12), 14120–14130 (2013).
    [Crossref] [PubMed]
  27. T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
    [Crossref]

2014 (2)

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

2013 (5)

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. R. Antonelli, and A. D. Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21(12), 14120–14130 (2013).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

2012 (3)

2011 (4)

2010 (1)

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

2009 (2)

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

2002 (1)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

2001 (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

2000 (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

1996 (1)

1992 (1)

1991 (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

1990 (1)

1978 (1)

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

Antonelli, M. R.

Azzam, R. M. A.

Babilotte, P.

Backman, V.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Badizadegan, K.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Benali, A.

Chipman, R. A.

Cohen, H.

Dasari, R. R.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

De Martino, A.

Ding, T.

Du, E.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

Dubreuil, M.

Fallet, C.

Feld, M. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Foldyna, M.

Freudenthal, J.

H. M. Ye, J. Xu, J. Freudenthal, and B. Kahr, “On the circular birefringence of polycrystalline polymers: polylactide,” J. Am. Chem. Soc. 133(35), 13848–13851 (2011).
[Crossref] [PubMed]

Gayet, B.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix images of colon tissue,” Biomed. Opt. Express 2(7), 1836–1851 (2011).
[Crossref] [PubMed]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Ghosh, N.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

Goldstein, D. H.

Guo, Y.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

He, H.

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

He, Y.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

Ibrahim, B. H.

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Jiang, X.

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

Kahr, B.

H. M. Ye, J. Xu, J. Freudenthal, and B. Kahr, “On the circular birefringence of polycrystalline polymers: polylactide,” J. Am. Chem. Soc. 133(35), 13848–13851 (2011).
[Crossref] [PubMed]

Kildemo, M.

Le Brun, G.

Le Grand, Y.

Le Jeune, B.

Le Roy, S.

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Li, D.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

Li, R. K.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

Li, S. H.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

Li, W.

Liao, R.

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

Liu, S.

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

Lu, S. Y.

Ma, H.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

Manhas, S.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. R. Antonelli, and A. D. Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21(12), 14120–14130 (2013).
[Crossref] [PubMed]

Martin, L.

Martino, A.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

Martino, A. D.

Nazac, A.

Nerbø, I. S.

Novikova, T.

Peng, B.

Peng, C.

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Pierangelo, A.

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Rivet, S.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Sevrain, D.

Søndergård, E.

Sun, M.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

Turlin, B.

Validire, P.

Vitkin, I. A.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

Wang, P.

Weisel, R. D.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

Wilson, B. C.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

Wood, M. F. G.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

Wu, J.

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

Xu, J.

H. M. Ye, J. Xu, J. Freudenthal, and B. Kahr, “On the circular birefringence of polycrystalline polymers: polylactide,” J. Am. Chem. Soc. 133(35), 13848–13851 (2011).
[Crossref] [PubMed]

Ye, H. M.

H. M. Ye, J. Xu, J. Freudenthal, and B. Kahr, “On the circular birefringence of polycrystalline polymers: polylactide,” J. Am. Chem. Soc. 133(35), 13848–13851 (2011).
[Crossref] [PubMed]

Yun, T.

Zeng, N.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53(14), 2949–2955 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127(7), 1000–1005 (1991).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

J Biophotonics (1)

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

H. M. Ye, J. Xu, J. Freudenthal, and B. Kahr, “On the circular birefringence of polycrystalline polymers: polylactide,” J. Am. Chem. Soc. 133(35), 13848–13851 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18(4), 046002 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014).
[Crossref] [PubMed]

R. Liao, N. Zeng, X. Jiang, D. Li, T. Yun, Y. He, and H. Ma, “Rotating linear polarization imaging for quantitative characterization of anisotropic tissues,” J. Biomed. Opt. 15(3), 036014 (2010).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Nat. Med. (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Photon. Lasers Med. (1)

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2(2), 129–137 (2013).
[Crossref]

Other (2)

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophotonics, DOI: .
[Crossref]

J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. (Oxford University Press, 1995), Fig. 6.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of experimental setup for the backscattering Mueller matrix measurement. P: polarizer; QW: quarter-wave plate; L: lens. The polarized light illuminates the sample at about 20 degree to the normal to eliminate the surface reflection. The diameter of the illumination area is about 1.8 cm.
Fig. 2
Fig. 2 Photographs of the biological samples: (a) chicken heart tissue, (b) bovine skeletal muscle tissue, (c) porcine liver tissue, (d) porcine fat tissue. In order to show more structural details of the tissues, we choose 1 cm × 1 cm squares from the illumination areas as the imaging regions, which are marked by the red squares. For the chicken heart sample, zone 1 contains muscle fibers aligned parallel to the imaging X-Y plane, the white arrow line indicates the orientation of muscle fibers; zone 2 contains randomly oriented muscle fibers [24,25].
Fig. 3
Fig. 3 (a) Photograph of the 28 μm thick slice of unstained human cervix carcinoma tissue, the red circle indicates the imaging region, (b) photograph of the 4 μm thick slice of corresponding H-E stained human cervix carcinoma tissue, (c) microscope image of the H-E stained tissue of healthy region, (d) microscope image of the H-E stained tissue of cancerous region.
Fig. 4
Fig. 4 Experimental results of backscattering Mueller matrices of biological samples: (a) chicken heart tissue (the black arrow line in m11 indicates the approximate orientation of muscle fibers. The white square indicates the approximate area chosen for the calculation of average values of Mueller matrix elements), (b) bovine skeletal muscle tissue, (c) porcine liver tissue, (d) porcine fat tissue. All the Mueller matrix elements are normalized by the m11. The color codes are from −1 to 1 for m11, m22, m33, and m44, and from −0.1 to 0.1 for other elements. The imaging area is about 1 cm × 1 cm.
Fig. 5
Fig. 5 2D images of MMT and MMPD parameters of biological samples: (a) chicken heart tissue (the white square indicates the approximate area chosen for the calculation of average values of MMT and MMPD parameters), (b) bovine skeletal muscle tissue, (c) porcine liver tissue, (d) porcine fat tissue. The color codes for MMT parameters A, b and MMPD parameters Δ and R are from 0 to 1, the color code for MMT parameter x is from 0 to 90 degree, the color code for MMPD parameter D is from 0 to 0.5.
Fig. 6
Fig. 6 2D images of the MMT and MMPD parameters of cervix tissues shown in Fig. 3(a): (a) A, (b) b, (c) x, (d) depolarization Δ, (e) retardance R, (f) diattenuation D.

Tables (2)

Tables Icon

Table 1 Average values of Mueller matrix elements for different tissue samples

Tables Icon

Table 2 Average values of MMT and MMPD parameters for different tissue samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= α 0 + n=1 12 ( α n cos2 1 + β n sin2 1 )
A= 2bt b 2 + t 2 [0,1] b= m22+m33 2   t= (m22m33) 2 + (m23+m32) 2 2 tan(2x)= m13 m12

Metrics