Abstract

Over the years, many computed optical interferometric techniques have been developed to perform high-resolution volumetric tomography. By utilizing the phase and amplitude information provided with interferometric detection, post-acquisition corrections for defocus and optical aberrations can be performed. The introduction of the phase, though, can dramatically increase the sensitivity to motion (most prominently along the optical axis). In this paper, we present two algorithms which, together, can correct for motion in all three dimensions with enough accuracy for defocus and aberration correction in computed optical interferometric tomography. The first algorithm utilizes phase differences within the acquired data to correct for motion along the optical axis. The second algorithm utilizes the addition of a speckle tracking system using temporally- and spatially-coherent illumination to measure motion orthogonal to the optical axis. The use of coherent illumination allows for high-contrast speckle patterns even when imaging apparently uniform samples or when highly aberrated beams cannot be avoided.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stability in computed optical interferometric tomography (Part II): in vivo stability assessment

Nathan D. Shemonski, Adeel Ahmad, Steven G. Adie, Yuan-Zhi Liu, Fredrick A. South, P. Scott Carney, and Stephen A. Boppart
Opt. Express 22(16) 19314-19326 (2014)

Stability in computed optical interferometric tomography (Part I): Stability requirements

Nathan D. Shemonski, Steven G. Adie, Yuan-Zhi Liu, Fredrick A. South, P. Scott Carney, and Stephen A. Boppart
Opt. Express 22(16) 19183-19197 (2014)

Computed optical interferometric tomography for high-speed volumetric cellular imaging

Yuan-Zhi Liu, Nathan D. Shemonski, Steven G. Adie, Adeel Ahmad, Andrew J. Bower, P. Scott Carney, and Stephen A. Boppart
Biomed. Opt. Express 5(9) 2988-3000 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Považay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express 17(5), 4134–4150 (2009).
    [Crossref] [PubMed]
  2. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
    [Crossref] [PubMed]
  3. N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
    [Crossref] [PubMed]
  4. S.-S. Chang, H.-T. Chou, H.-Y. Liang, and K.-C. Chang, “Quantification of left ventricular volumes using three-dimensional echocardiography: Comparison with 64-slice multidetector computed tomography,” J. Med. Ultrasound 18(2), 71–78 (2010).
    [Crossref]
  5. O. P. Kocaoglu, R. D. Ferguson, R. S. Jonnal, Z. Liu, Q. Wang, D. X. Hammer, and D. T. Miller, “Adaptive optics optical coherence tomography with dynamic retinal tracking,” Biomed. Opt. Express 5(7), 2262–2284 (2014).
    [Crossref] [PubMed]
  6. G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15(25), 16808–16817 (2007).
    [Crossref] [PubMed]
  7. F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).
    [Crossref] [PubMed]
  8. V. X. D. Yang, M. L. Gordon, B. Q. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
    [Crossref] [PubMed]
  9. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [Crossref] [PubMed]
  10. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref]
  11. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
    [Crossref] [PubMed]
  12. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  13. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy - holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [Crossref] [PubMed]
  14. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in Proceedings of 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro (2006), pp. 578–581.
    [Crossref]
  15. N. D. Shemonski, S. G. Adie, Y.-Z. L. F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
    [Crossref]
  16. N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): In vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
    [Crossref]
  17. A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
    [Crossref] [PubMed]
  18. Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
    [Crossref]
  19. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
    [Crossref] [PubMed]
  20. G. Liu, Z. Zhou, and P. Li, “Phase registration based on matching of phase distribution characteristics and its application in FDOCT,” Opt. Express 21(11), 13241–13255 (2013).
    [Crossref] [PubMed]
  21. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
    [Crossref] [PubMed]
  22. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref] [PubMed]
  23. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]

2014 (6)

2013 (3)

2012 (1)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

S.-S. Chang, H.-T. Chou, H.-Y. Liang, and K.-C. Chang, “Quantification of left ventricular volumes using three-dimensional echocardiography: Comparison with 64-slice multidetector computed tomography,” J. Med. Ultrasound 18(2), 71–78 (2010).
[Crossref]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (2)

2004 (2)

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[Crossref] [PubMed]

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

2003 (2)

Ablitt, N. A.

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

Adie, S. G.

Ahmad, A.

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): In vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref]

A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Baumann, B.

Bird, A. C.

Boas, D. A.

Bonin, T.

Boppart, S. A.

N. D. Shemonski, S. G. Adie, Y.-Z. L. F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): In vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref]

A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

Bouma, B. E.

Bower, A. J.

Carney, P. S.

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): In vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref]

N. D. Shemonski, S. G. Adie, Y.-Z. L. F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref]

A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

Cense, B.

Chang, K.-C.

S.-S. Chang, H.-T. Chou, H.-Y. Liang, and K.-C. Chang, “Quantification of left ventricular volumes using three-dimensional echocardiography: Comparison with 64-slice multidetector computed tomography,” J. Med. Ultrasound 18(2), 71–78 (2010).
[Crossref]

Chang, S.-S.

S.-S. Chang, H.-T. Chou, H.-Y. Liang, and K.-C. Chang, “Quantification of left ventricular volumes using three-dimensional echocardiography: Comparison with 64-slice multidetector computed tomography,” J. Med. Ultrasound 18(2), 71–78 (2010).
[Crossref]

Chen, T. C.

Chou, H.-T.

S.-S. Chang, H.-T. Chou, H.-Y. Liang, and K.-C. Chang, “Quantification of left ventricular volumes using three-dimensional echocardiography: Comparison with 64-slice multidetector computed tomography,” J. Med. Ultrasound 18(2), 71–78 (2010).
[Crossref]

de Boer, J. F.

Drexler, W.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Egan, C. A.

Esmaeelpour, M.

Felberer, F.

Ferguson, R. D.

Firmin, D. N.

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

Gao, J.

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

Gordon, M. L.

Graf, B. W.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Hammer, D. X.

Hermann, B.

Hillmann, D.

Hitzenberger, C. K.

Hofer, B.

Hüttmann, G.

Hwu, W.-M. W.

A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Iftimia, N. V.

Jonnal, R. S.

Keegan, J.

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

Kim, H. S.

A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Kim, K. H.

Kocaoglu, O. P.

Koch, P.

Kroisamer, J.-S.

Kumar, A.

Lee, J.

Leitgeb, R. A.

Li, P.

Liang, H.-Y.

S.-S. Chang, H.-T. Chou, H.-Y. Liang, and K.-C. Chang, “Quantification of left ventricular volumes using three-dimensional echocardiography: Comparison with 64-slice multidetector computed tomography,” J. Med. Ultrasound 18(2), 71–78 (2010).
[Crossref]

Liu, G.

Liu, Y.-Z.

Liu, Z.

Lo, S.

Lührs, C.

Maguluri, G.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

Miller, D. T.

Mok, A.

Mujat, M.

Nassif, N.

Park, B. H.

Pekar, J.

Pierce, M. C.

Pircher, M.

Považay, B.

Qi, B. Q.

Radhakrishnan, H.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

Schmidt-Erfurth, U.

Seng-Yue, E.

Shemonski, N. D.

South, F.

South, Y.-Z. L. F.

Srinivasan, V.

Stegger, L.

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

Sun, W.

Tearney, G. J.

Torti, C.

Tumlinson, A. R.

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[Crossref] [PubMed]

Vitkin, I. A.

Wang, Q.

White, B. R.

Wilson, B. C.

Yang, G. Z.

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

Yang, V. X. D.

Yun, S. H.

Zhou, Z.

Zotter, S.

Biomed. Opt. Express (3)

IEEE Trans. Med. Imaging (2)

N. A. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin, and G. Z. Yang, “Predictive cardiac motion modeling and correction with partial least squares regression,” IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004).
[Crossref] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

J. Med. Ultrasound (1)

S.-S. Chang, H.-T. Chou, H.-Y. Liang, and K.-C. Chang, “Quantification of left ventricular volumes using three-dimensional echocardiography: Comparison with 64-slice multidetector computed tomography,” J. Med. Ultrasound 18(2), 71–78 (2010).
[Crossref]

Nat. Photonics (1)

A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref]

Opt. Express (11)

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
[Crossref] [PubMed]

G. Liu, Z. Zhou, and P. Li, “Phase registration based on matching of phase distribution characteristics and its application in FDOCT,” Opt. Express 21(11), 13241–13255 (2013).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. L. F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): In vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref]

B. Považay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express 17(5), 4134–4150 (2009).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[Crossref] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Q. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[Crossref] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[Crossref] [PubMed]

G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15(25), 16808–16817 (2007).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Other (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in Proceedings of 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro (2006), pp. 578–581.
[Crossref]

Supplementary Material (2)

» Media 1: MOV (2662 KB)     
» Media 2: MOV (2431 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic of the SD-OCT system with a speckle-tracking subsystem. PC: Polarization controllers, DC: Dispersion compensation, BS: Beamsplitter, DM: Dichroic mirror.
Fig. 2
Fig. 2 Three-dimensional motion tracking. The top row flowchart determines the axial motion from the OCT tomogram (no need for a coverslip), and the bottom row flowchart details sub-pixel speckle tracking using the speckle subsystem.
Fig. 3
Fig. 3 Frames averages of two speckle-tracking videos. On left (Media 1), a static phantom was manually translated during imaging. On right (Media 2), a human finger was free to move in all dimensions during imaging. Tracked averages show noticeably higher contrast.
Fig. 4
Fig. 4 Refocused tissue phantom with 1-D motion. The phantom was translated in a sinusoidal manner along the fast axis (top-to-bottom). Scale bars represent 100 μm.
Fig. 5
Fig. 5 Refocused tissue phantom with 2-D motion. The phantom was translated in a sinusoidal manner along both the fast (top-to-bottom) and slow (left-to-right) axes. When compared to Fig. 4, the refocusing is somewhat degraded. Scale bars represent 100 μm.
Fig. 6
Fig. 6 In vivo phase-only correction. Finger motion was restricted to the axial dimension as shown in the mounting schematic on the top left and used previously [16]. Top right shows en face images through a single sweat duct. Refocusing the OCT en face plane without phase correction results in smearing along the slow axis (left-to-right). With phase correction, though, the expected crescent shape of the sweat duct is recovered. A plot of the phase map used for correction is also shown. The bottom row shows 3-D renderings of the OCT and refocused tomograms. The sweat duct was cropped from a larger data set. Scale bars represent 50 µm.
Fig. 7
Fig. 7 In vivo 3-D motion correction. The human volunteer was asked to gently move his finger during imaging. Using the acquired speckle video, 2-D transverse motion was corrected. When refocused, blurring along the slow axis occurred if only 2-D motion correction is performed. Including phase correction resulted in the best refocusing and the most well-defined crescent shape of the sweat duct in this en face plane (far right). The bottom row shows volume renderings (cropped from full tomogram) of the single sweat duct from the original OCT and the final refocused tomograms. Finally, the plot in the bottom right shows the 2-D motion tracked from the speckle video. Scale bars represent 300 µm.
Fig. 8
Fig. 8 Sensitivity of axial and transverse motion correction. For axial motion correction, even with dy/ω0 = 2, the RMS error satisfies the axial stability requirements [15]. For transverse motion, although the RMS error satisfied the stability requirements, residual sinusoidal motion was still present.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S AC (x,y,z)= 1 { S ˜ OCT ( k x , k y ,z)( ( m 4 z+ b 4 )exp(i Z 4 )+ z 6 exp(i Z 6 ) ) }

Metrics