Abstract

Polarisation imaging has the potential to provide enhanced contrast based on variations in the optical properties, such as scattering or birefringence, of the tissue of interest. Examining the signal at different wavebands in the visible spectrum also allows interrogation of different depths and structures. A stereo endoscope has been adapted to allow snapshot acquisition of orthogonal linear polarisation images to generate difference of linear polarisation images. These images are acquired in three narrow bands using a triple-bandpass filter and pair of colour cameras. The first in vivo results, acquired during a surgical procedure on a porcine subject, are presented that show wavelength dependent variations in vessel visibility and an increase in contrast under polarised detection.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery

Neil T. Clancy, Danail Stoyanov, David R. C. James, Aimee Di Marco, Vincent Sauvage, James Clark, Guang-Zhong Yang, and Daniel S. Elson
Biomed. Opt. Express 3(10) 2567-2578 (2012)

Narrow band 3 × 3 Mueller polarimetric endoscopy

Ji Qi, Menglong Ye, Mohan Singh, Neil T. Clancy, and Daniel S. Elson
Biomed. Opt. Express 4(11) 2433-2449 (2013)

Registration of free-hand OCT daughter endoscopy to 3D organ reconstruction

Kristen L. Lurie, Roland Angst, Eric J. Seibel, Joseph C. Liao, and Audrey K. Ellerbee Bowden
Biomed. Opt. Express 7(12) 4995-5009 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
    [Crossref] [PubMed]
  2. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
    [Crossref] [PubMed]
  3. J. Kim, R. John, P. J. Wu, M. C. Martini, and J. T. J. Walsh., “In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light,” Lasers Surg. Med. 42(1), 76–85 (2010).
    [Crossref] [PubMed]
  4. Q. Zhu, I. M. Stockford, J. A. Crowe, and S. P. Morgan, “Experimental and theoretical evaluation of rotating orthogonal polarization imaging,” J. Biomed. Opt. 14, 034006 (2009).
  5. P. J. Wu and J. T. J. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
    [Crossref] [PubMed]
  6. N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
    [Crossref] [PubMed]
  7. J. Qi, C. Barrière, T. C. Wood, and D. S. Elson, “Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy,” Biomed. Opt. Express 3(9), 2087–2099 (2012).
    [Crossref] [PubMed]
  8. J. Qi, M. Ye, M. Singh, N. T. Clancy, and D. S. Elson, “Narrow band 3 × 3 Mueller polarimetric endoscopy,” Biomed. Opt. Express 4(11), 2433–2449 (2013).
    [Crossref] [PubMed]
  9. T. C. Wood and D. S. Elson, “Polarization response measurement and simulation of rigid endoscopes,” Biomed. Opt. Express 1(2), 463–470 (2010).
    [Crossref] [PubMed]
  10. Z. Nan, J. Xiaoyu, G. Qiang, H. Yonghong, and M. Hui, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48(35), 6734–6739 (2009).
    [Crossref] [PubMed]
  11. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
    [Crossref] [PubMed]
  12. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
    [Crossref] [PubMed]
  13. N. T. Clancy and D. S. Elson, “A snapshot endoscopic polarisation imaging system,” in Proceedings of The Hamlyn Symposium on Medical Robotics, G.-Z. Yang, and A. Darzi, eds. (London, UK, 2012), pp. 105–106.
  14. N. T. Clancy, V. Sauvage, S. Saso, D. Stoyanov, D. J. Corless, M. Boyd, D. E. Noakes, G.-Z. Yang, S. Ghaem-Maghami, J. R. Smith, and D. S. Elson, “Registration and analysis of multispectral images acquired during uterine transplantation surgery,” in OSA Biomedical Optics, Technical Digest (CD)(Optical Society of America, 2012), paper BSu3A.73. http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2012-BSu3A.73
    [Crossref]
  15. D. Stoyanov, A. Rayshubskiy, and E. Hillman, “Robust registration of multispectral images of the cortical surface in neurosurgery,” in IEEE International Symposium on Biomedical Imaging (Institute of Electrical and Electronics Engineers, Spain, 2012), pp. 1643–1646.
    [Crossref]
  16. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, “Coherence and polarization of light propagating through scattering media and biological tissues,” Appl. Opt. 37(31), 7357–7367 (1998).
    [Crossref] [PubMed]
  17. Y. Liu, Y. L. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005).
    [Crossref] [PubMed]
  18. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  19. A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
    [Crossref] [PubMed]
  20. M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [Crossref] [PubMed]

2013 (3)

J. Qi, M. Ye, M. Singh, N. T. Clancy, and D. S. Elson, “Narrow band 3 × 3 Mueller polarimetric endoscopy,” Biomed. Opt. Express 4(11), 2433–2449 (2013).
[Crossref] [PubMed]

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (2)

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[Crossref] [PubMed]

J. Qi, C. Barrière, T. C. Wood, and D. S. Elson, “Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy,” Biomed. Opt. Express 3(9), 2087–2099 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2009 (2)

Z. Nan, J. Xiaoyu, G. Qiang, H. Yonghong, and M. Hui, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48(35), 6734–6739 (2009).
[Crossref] [PubMed]

Q. Zhu, I. M. Stockford, J. A. Crowe, and S. P. Morgan, “Experimental and theoretical evaluation of rotating orthogonal polarization imaging,” J. Biomed. Opt. 14, 034006 (2009).

2007 (1)

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

2005 (2)

Y. Liu, Y. L. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005).
[Crossref] [PubMed]

P. J. Wu and J. T. J. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[Crossref] [PubMed]

2002 (1)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

2000 (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

1998 (1)

Anandasabapathy, S.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Anderson, C.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Antonelli, M.-R.

Backman, V.

Barrière, C.

Benali, A.

Clancy, N. T.

Crowe, J. A.

Q. Zhu, I. M. Stockford, J. A. Crowe, and S. P. Morgan, “Experimental and theoretical evaluation of rotating orthogonal polarization imaging,” J. Biomed. Opt. 14, 034006 (2009).

Damaschini, V.

De Martino, A.

Elson, D. S.

Epifanie, M.

Fallet, C.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[Crossref] [PubMed]

Flores, R. M.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Gayet, B.

Henricson, J.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Hui, M.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Jarry, G.

John, R.

J. Kim, R. John, P. J. Wu, M. C. Martini, and J. T. J. Walsh., “In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light,” Lasers Surg. Med. 42(1), 76–85 (2010).
[Crossref] [PubMed]

Jurczak, M.

Kaiser, R.

Kim, J.

J. Kim, R. John, P. J. Wu, M. C. Martini, and J. T. J. Walsh., “In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light,” Lasers Surg. Med. 42(1), 76–85 (2010).
[Crossref] [PubMed]

Kim, Y. L.

Leahy, M. J.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Lee, M. H.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Li, X.

Liu, Y.

Manhas, S.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[Crossref] [PubMed]

Martini, M. C.

J. Kim, R. John, P. J. Wu, M. C. Martini, and J. T. J. Walsh., “In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light,” Lasers Surg. Med. 42(1), 76–85 (2010).
[Crossref] [PubMed]

Morgan, S. P.

Q. Zhu, I. M. Stockford, J. A. Crowe, and S. P. Morgan, “Experimental and theoretical evaluation of rotating orthogonal polarization imaging,” J. Biomed. Opt. 14, 034006 (2009).

Nan, Z.

Nilsson, G. E.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Novikova, T.

O’Doherty, J.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Pierangelo, A.

Pierce, M. C.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Polydorides, A. D.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Qi, J.

Qiang, G.

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Richards-Kortum, R. R.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

Singh, M.

Sjöberg, F.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Steimer, E.

Stockford, I. M.

Q. Zhu, I. M. Stockford, J. A. Crowe, and S. P. Morgan, “Experimental and theoretical evaluation of rotating orthogonal polarization imaging,” J. Biomed. Opt. 14, 034006 (2009).

Thekkek, N.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Validire, P.

Walsh, J. T. J.

J. Kim, R. John, P. J. Wu, M. C. Martini, and J. T. J. Walsh., “In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light,” Lasers Surg. Med. 42(1), 76–85 (2010).
[Crossref] [PubMed]

P. J. Wu and J. T. J. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[Crossref] [PubMed]

Wood, T. C.

Wu, P. J.

J. Kim, R. John, P. J. Wu, M. C. Martini, and J. T. J. Walsh., “In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light,” Lasers Surg. Med. 42(1), 76–85 (2010).
[Crossref] [PubMed]

P. J. Wu and J. T. J. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[Crossref] [PubMed]

Xiaoyu, J.

Ye, M.

Yonghong, H.

Zhu, Q.

Q. Zhu, I. M. Stockford, J. A. Crowe, and S. P. Morgan, “Experimental and theoretical evaluation of rotating orthogonal polarization imaging,” J. Biomed. Opt. 14, 034006 (2009).

Appl. Opt. (2)

Biomed. Opt. Express (3)

J. Biomed. Opt. (4)

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, and R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[Crossref] [PubMed]

Q. Zhu, I. M. Stockford, J. A. Crowe, and S. P. Morgan, “Experimental and theoretical evaluation of rotating orthogonal polarization imaging,” J. Biomed. Opt. 14, 034006 (2009).

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Lasers Surg. Med. (3)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000).
[Crossref] [PubMed]

P. J. Wu and J. T. J. Walsh., “Stokes polarimetry imaging of rat-tail tissue in a turbid medium using incident circularly polarized light,” Lasers Surg. Med. 37(5), 396–406 (2005).
[Crossref] [PubMed]

J. Kim, R. John, P. J. Wu, M. C. Martini, and J. T. J. Walsh., “In vivo characterization of human pigmented lesions by degree of linear polarization image maps using incident linearly polarized light,” Lasers Surg. Med. 42(1), 76–85 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Skin Res. Technol. (1)

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[Crossref] [PubMed]

Other (3)

N. T. Clancy and D. S. Elson, “A snapshot endoscopic polarisation imaging system,” in Proceedings of The Hamlyn Symposium on Medical Robotics, G.-Z. Yang, and A. Darzi, eds. (London, UK, 2012), pp. 105–106.

N. T. Clancy, V. Sauvage, S. Saso, D. Stoyanov, D. J. Corless, M. Boyd, D. E. Noakes, G.-Z. Yang, S. Ghaem-Maghami, J. R. Smith, and D. S. Elson, “Registration and analysis of multispectral images acquired during uterine transplantation surgery,” in OSA Biomedical Optics, Technical Digest (CD)(Optical Society of America, 2012), paper BSu3A.73. http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2012-BSu3A.73
[Crossref]

D. Stoyanov, A. Rayshubskiy, and E. Hillman, “Robust registration of multispectral images of the cortical surface in neurosurgery,” in IEEE International Symposium on Biomedical Imaging (Institute of Electrical and Electronics Engineers, Spain, 2012), pp. 1643–1646.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Stereo polarisation endoscope. (a) A piece of film linear polariser placed over the endoscope face generates linear polarised light. The CO component is detected through the right channel while a separate section with its transmission axis orientated at 90° collects CR light. (b) Light passing through the endoscope’s CO and CR channels exits through the eyepieces at the proximal end and is focussed onto the CCDs, through a triple bandpass filter, using 50 mm focal length lenses. (c) Combined transmission properties of the triple bandpass filter and the colour CCD’s RGB Bayer filter, which is used to separate the three bands.
Fig. 2
Fig. 2 Registration of CO and CR images using the image warping algorithm. (a) Reference image (b) Equalized intensity (c) Mesh application and feature detection (d) Warped image.
Fig. 3
Fig. 3 Polarising film transmission spectra for a single polarising filter, and a pair of filters in CO and CR configurations.
Fig. 4
Fig. 4 Images of porcine large intestine viewed through the CO and CR channels. Specular reflections are noticeably reduced in CR and the visibility of a number of blood vessels (white arrows) has increased. The curvature visible at the edges in the CO image is due to the warping involved during the registration process.
Fig. 5
Fig. 5 Pol images of porcine tissue in the red (R), green (G) and blue (B) wavebands along with the corresponding total intensity (ITot) colour image. The data show varying contrast with wavelength in (a) bladder, (b) large intestine, and (c) small intestine.
Fig. 6
Fig. 6 Standard colour and enhanced PolRGB images. Polarisation information is encoded in colour with red representing the signal from deep structures and blue/green corresponding to more superficial tissue. (a)-(c) Small bowel (d)-(f) Bladder (g)-(h) Large bowel. White arrows indicate vascular features whose visibility has been enhanced.
Fig. 7
Fig. 7 Contrast analysis. (a) and (c) show PolRGB ROIs in the bladder and large bowel, while (b) and (d) are the total intensity RGB images for the same regions. The bar chart (e) shows the difference in Weber contrast between vessels of varying size and immediately neighbouring tissues for standard total intensity and Pol images (green waveband) of the bladder, and large and small bowel.

Tables (1)

Tables Icon

Table 1 Tissue optical properties and estimated penetration depth (D) of the polarization-maintaining component of the illumination source at the centre wavelength (λc) of each of the three wavebands used.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Po l λ = C O λ C R λ C O λ +C R λ
C W = | I I 0 | I 0

Metrics