Abstract

We demonstrate the application of polystyrene-functionalized gold nanorods (AuNRs) as a platform for surface enhanced Raman scattering (SERS) quantification of the exogenous cancer biomarker Acetyl Amantadine (AcAm). We utilize the hydrophobicity of the polystyrene attached to the AuNR surface to capture the hydrophobic AcAm from solution, followed by drying and detection using SERS. We achieve a detection limit of 16 ng/mL using this platform. This result shows clinical potential for low-cost early cancer detection.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

Ming Li, Yong Du, Fusheng Zhao, Jianbo Zeng, Chandra Mohan, and Wei-Chuan Shih
Biomed. Opt. Express 6(3) 849-858 (2015)

Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection

Jingmao Chi, Thet Zaw, Iliana Cardona, Mujtaba Hosnain, Neha Garg, Heather R. Lefkowitz, Peter Tolias, and Henry Du
Biomed. Opt. Express 6(3) 761-769 (2015)

Construction of optimized Au@Ag core-shell nanorods for ultralow SERS detection of antibiotic levofloxacin molecules

Yue Tian, Guanhua Li, Hua Zhang, Linlin Xu, Anxin Jiao, Feng Chen, and Ming Chen
Opt. Express 26(18) 23347-23358 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Thomas and T. J. Thomas, “Polyamine metabolism and cancer,” J. Cell. Mol. Med. 7(2), 113–126 (2003).
    [Crossref] [PubMed]
  2. A. P. Bras, J. Jänne, C. W. Porter, and D. S. Sitar, “Spermidine/Spermine N 1-Acetyltransferase Catalyzes Amantadine Acetylation,” Drug Metab. Dispos. 29(5), 676–680 (2001).
    [PubMed]
  3. A. P. Bras, H. R. Hoff, F. Y. Aoki, and D. S. Sitar, “Amantadine acetylation may be effected by acetyltransferases other than NAT1 or NAT2,” Can. J. Physiol. Pharmacol. 76(7-8), 701–706 (1998).
    [Crossref] [PubMed]
  4. D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
    [Crossref]
  5. D. S. Sitar and A. P. M. Bras, “Method for Assaying Non-Spermine/Spermidine Activity of N1-Acetyltransferase (SSAT),” U.S. Patent, US6811967 B2, 2004.
  6. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to infrared and Raman spectroscopy (Elsevier, 1990).
  7. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
    [Crossref] [PubMed]
  8. T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33(7), 511–516 (2002).
    [Crossref]
  9. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
    [Crossref] [PubMed]
  10. R. L. McCreery, Raman spectroscopy for chemical analysis (John Wiley & Sons, 2005).
  11. K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc. 60(12), 322–334 (2006).
    [Crossref] [PubMed]
  12. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  13. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  14. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  15. W. W. Yu and I. M. White, “Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection,” Analyst (Lond.) 138(4), 1020–1025 (2013).
    [Crossref] [PubMed]
  16. W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
    [Crossref] [PubMed]
  17. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
    [Crossref]
  18. S. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, “Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates,” Nanotechnology 22(26), 265705 (2011).
    [Crossref] [PubMed]
  19. B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
    [Crossref]
  20. A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
    [Crossref] [PubMed]
  21. A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
    [Crossref]
  22. Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
    [Crossref]
  23. S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, and O. A. Scherman, “Gold Nanorods with Sub-Nanometer Separation using Cucurbit[n]uril for SERS Applications,” Small doi (posted 28 July 2014, in press).
    [Crossref]
  24. H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
    [Crossref] [PubMed]
  25. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  26. A. Lukach, K. Liu, H. Therien-Aubin, and E. Kumacheva, “Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers,” J. Am. Chem. Soc. 134(45), 18853–18859 (2012).
    [Crossref] [PubMed]
  27. G. Hajisalem, Q. Min, R. Gelfand, and R. Gordon, “Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime,” Opt. Express 22(8), 9604–9610 (2014).
    [Crossref] [PubMed]
  28. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
    [Crossref]
  29. A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
    [Crossref] [PubMed]
  30. R. Y. Sato-Berrú and J. M. Saniger, “Application of principal component analysis to discriminate the Raman spectra of functionalized multiwalled carbon nanotubes,” J. Raman Spectrosc. 37(11), 1302–1306 (2006).
    [Crossref]
  31. L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
    [Crossref] [PubMed]
  32. D. S. Sitar, A. P. Bras, A. Maksymiuk, K. M. Cheng, and H. Zhou, “Progress in the development of SSAT1 activity as a biomarker for diagnosis of cancer,” presented at the BIT Life Sciences’ Annual World Cancer Congress, Beijing, 22–25 Jun. 2009.
  33. R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
    [Crossref] [PubMed]
  34. S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
    [Crossref] [PubMed]
  35. R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
    [Crossref] [PubMed]
  36. G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
    [Crossref] [PubMed]

2014 (2)

G. Hajisalem, Q. Min, R. Gelfand, and R. Gordon, “Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime,” Opt. Express 22(8), 9604–9610 (2014).
[Crossref] [PubMed]

G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
[Crossref] [PubMed]

2013 (5)

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection,” Analyst (Lond.) 138(4), 1020–1025 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

2012 (2)

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

A. Lukach, K. Liu, H. Therien-Aubin, and E. Kumacheva, “Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers,” J. Am. Chem. Soc. 134(45), 18853–18859 (2012).
[Crossref] [PubMed]

2011 (4)

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

S. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, “Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates,” Nanotechnology 22(26), 265705 (2011).
[Crossref] [PubMed]

2010 (2)

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
[Crossref] [PubMed]

2009 (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

2007 (1)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

2006 (3)

R. Y. Sato-Berrú and J. M. Saniger, “Application of principal component analysis to discriminate the Raman spectra of functionalized multiwalled carbon nanotubes,” J. Raman Spectrosc. 37(11), 1302–1306 (2006).
[Crossref]

K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc. 60(12), 322–334 (2006).
[Crossref] [PubMed]

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

2003 (3)

T. Thomas and T. J. Thomas, “Polyamine metabolism and cancer,” J. Cell. Mol. Med. 7(2), 113–126 (2003).
[Crossref] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

2002 (2)

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[Crossref]

T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33(7), 511–516 (2002).
[Crossref]

2001 (1)

A. P. Bras, J. Jänne, C. W. Porter, and D. S. Sitar, “Spermidine/Spermine N 1-Acetyltransferase Catalyzes Amantadine Acetylation,” Drug Metab. Dispos. 29(5), 676–680 (2001).
[PubMed]

1999 (2)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

1998 (1)

A. P. Bras, H. R. Hoff, F. Y. Aoki, and D. S. Sitar, “Amantadine acetylation may be effected by acetyltransferases other than NAT1 or NAT2,” Can. J. Physiol. Pharmacol. 76(7-8), 701–706 (1998).
[Crossref] [PubMed]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ahmed, A.

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Aizpurua, J.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Allain, L. R.

T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33(7), 511–516 (2002).
[Crossref]

Ando, J.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

Andrade, G. F. S.

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Aoki, F. Y.

A. P. Bras, H. R. Hoff, F. Y. Aoki, and D. S. Sitar, “Amantadine acetylation may be effected by acetyltransferases other than NAT1 or NAT2,” Can. J. Physiol. Pharmacol. 76(7-8), 701–706 (1998).
[Crossref] [PubMed]

Baumberg, J. J.

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

Biedermann, F.

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Blakely, B. W.

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Brande, L.

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

Bras, A. P.

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

A. P. Bras, J. Jänne, C. W. Porter, and D. S. Sitar, “Spermidine/Spermine N 1-Acetyltransferase Catalyzes Amantadine Acetylation,” Drug Metab. Dispos. 29(5), 676–680 (2001).
[PubMed]

A. P. Bras, H. R. Hoff, F. Y. Aoki, and D. S. Sitar, “Amantadine acetylation may be effected by acetyltransferases other than NAT1 or NAT2,” Can. J. Physiol. Pharmacol. 76(7-8), 701–706 (1998).
[Crossref] [PubMed]

Brolo, A. G.

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Cao, G.

G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
[Crossref] [PubMed]

Chen, B.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

Coombs, N.

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Coulston, R. J.

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dodo, K.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

dos Santos, D. P.

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

Du, Y.

L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
[Crossref] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Esteban, R.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fujita, K.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

Gelfand, R.

Gopchandran, K. G.

S. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, “Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates,” Nanotechnology 22(26), 265705 (2011).
[Crossref] [PubMed]

Gordon, R.

G. Hajisalem, Q. Min, R. Gelfand, and R. Gordon, “Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime,” Opt. Express 22(8), 9604–9610 (2014).
[Crossref] [PubMed]

G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
[Crossref] [PubMed]

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Hajisalem, G.

G. Hajisalem, Q. Min, R. Gelfand, and R. Gordon, “Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime,” Opt. Express 22(8), 9604–9610 (2014).
[Crossref] [PubMed]

G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
[Crossref] [PubMed]

Hof, F.

G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
[Crossref] [PubMed]

Hoff, H. R.

A. P. Bras, H. R. Hoff, F. Y. Aoki, and D. S. Sitar, “Amantadine acetylation may be effected by acetyltransferases other than NAT1 or NAT2,” Can. J. Physiol. Pharmacol. 76(7-8), 701–706 (1998).
[Crossref] [PubMed]

Huang, F. M.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Huang, Q.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

Huang, Z.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

Hugall, J. T.

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

Huser, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Iwabuchi, Y.

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

Jänne, J.

A. P. Bras, J. Jänne, C. W. Porter, and D. S. Sitar, “Spermidine/Spermine N 1-Acetyltransferase Catalyzes Amantadine Acetylation,” Drug Metab. Dispos. 29(5), 676–680 (2001).
[PubMed]

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kanoh, N.

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

Kawata, S.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc. 60(12), 322–334 (2006).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc. 60(12), 322–334 (2006).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kumacheva, E.

A. Lukach, K. Liu, H. Therien-Aubin, and E. Kumacheva, “Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers,” J. Am. Chem. Soc. 134(45), 18853–18859 (2012).
[Crossref] [PubMed]

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Lee, A.

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Lee, T. C.

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

Li, Q.

L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
[Crossref] [PubMed]

Li, W.

G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
[Crossref] [PubMed]

Liu, K.

A. Lukach, K. Liu, H. Therien-Aubin, and E. Kumacheva, “Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers,” J. Am. Chem. Soc. 134(45), 18853–18859 (2012).
[Crossref] [PubMed]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Lukach, A.

A. Lukach, K. Liu, H. Therien-Aubin, and E. Kumacheva, “Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers,” J. Am. Chem. Soc. 134(45), 18853–18859 (2012).
[Crossref] [PubMed]

Mahajan, S.

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

Maksymiuk, A.

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

Meng, G.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

Min, Q.

Moriya, T.

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[Crossref]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

Osada, H.

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

Pabbies, A.

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

Palonpon, A. F.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

Park, J. I.

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Porter, C. W.

A. P. Bras, J. Jänne, C. W. Porter, and D. S. Sitar, “Spermidine/Spermine N 1-Acetyltransferase Catalyzes Amantadine Acetylation,” Drug Metab. Dispos. 29(5), 676–680 (2001).
[PubMed]

Prasad, V. S.

S. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, “Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates,” Nanotechnology 22(26), 265705 (2011).
[Crossref] [PubMed]

Ravindran, T. R.

S. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, “Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates,” Nanotechnology 22(26), 265705 (2011).
[Crossref] [PubMed]

Saniger, J. M.

R. Y. Sato-Berrú and J. M. Saniger, “Application of principal component analysis to discriminate the Raman spectra of functionalized multiwalled carbon nanotubes,” J. Raman Spectrosc. 37(11), 1302–1306 (2006).
[Crossref]

Sato-Berrú, R. Y.

R. Y. Sato-Berrú and J. M. Saniger, “Application of principal component analysis to discriminate the Raman spectra of functionalized multiwalled carbon nanotubes,” J. Raman Spectrosc. 37(11), 1302–1306 (2006).
[Crossref]

Scherman, O. A.

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

Sitar, D. S.

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

A. P. Bras, J. Jänne, C. W. Porter, and D. S. Sitar, “Spermidine/Spermine N 1-Acetyltransferase Catalyzes Amantadine Acetylation,” Drug Metab. Dispos. 29(5), 676–680 (2001).
[PubMed]

A. P. Bras, H. R. Hoff, F. Y. Aoki, and D. S. Sitar, “Amantadine acetylation may be effected by acetyltransferases other than NAT1 or NAT2,” Can. J. Physiol. Pharmacol. 76(7-8), 701–706 (1998).
[Crossref] [PubMed]

Smitha, S. L.

S. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, “Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates,” Nanotechnology 22(26), 265705 (2011).
[Crossref] [PubMed]

Sodeoka, M.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

Souza, M. L.

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Stokes, D. L.

T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33(7), 511–516 (2002).
[Crossref]

Takahashi, S.

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

Takayama, H.

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

Tao, W.

L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
[Crossref] [PubMed]

Taylor, R. W.

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Therien-Aubin, H.

A. Lukach, K. Liu, H. Therien-Aubin, and E. Kumacheva, “Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers,” J. Am. Chem. Soc. 134(45), 18853–18859 (2012).
[Crossref] [PubMed]

Thomas, T.

T. Thomas and T. J. Thomas, “Polyamine metabolism and cancer,” J. Cell. Mol. Med. 7(2), 113–126 (2003).
[Crossref] [PubMed]

Thomas, T. J.

T. Thomas and T. J. Thomas, “Polyamine metabolism and cancer,” J. Cell. Mol. Med. 7(2), 113–126 (2003).
[Crossref] [PubMed]

Tumarkin, E.

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33(7), 511–516 (2002).
[Crossref]

Wachsmann-Hogiu, S.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

Wang, J.

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Weeks, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

White, I. M.

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection,” Analyst (Lond.) 138(4), 1020–1025 (2013).
[Crossref] [PubMed]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Yamakoshi, H.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

Yu, B.

L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
[Crossref] [PubMed]

Yu, W. W.

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection,” Analyst (Lond.) 138(4), 1020–1025 (2013).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
[Crossref] [PubMed]

Zhang, Z.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

Zhu, C.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

ACS Nano (1)

R. W. Taylor, T. C. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5(5), 3878–3887 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

L. Zhang, Q. Li, W. Tao, B. Yu, and Y. Du, “Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression,” Anal. Bioanal. Chem. 398(4), 1827–1832 (2010).
[Crossref] [PubMed]

Analyst (Lond.) (3)

G. Cao, G. Hajisalem, W. Li, F. Hof, and R. Gordon, “Quantification of an exogenous cancer biomarker in urinalysis by Raman Spectroscopy,” Analyst (Lond.) 139(21), 5375–5378 (2014).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection,” Analyst (Lond.) 138(4), 1020–1025 (2013).
[Crossref] [PubMed]

W. W. Yu and I. M. White, “Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates,” Analyst (Lond.) 138(13), 3679–3686 (2013).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Can. J. Physiol. Pharmacol. (1)

A. P. Bras, H. R. Hoff, F. Y. Aoki, and D. S. Sitar, “Amantadine acetylation may be effected by acetyltransferases other than NAT1 or NAT2,” Can. J. Physiol. Pharmacol. 76(7-8), 701–706 (1998).
[Crossref] [PubMed]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Chem. Phys. Lett. (1)

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[Crossref]

Chem. Rev. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

ChemBioChem (1)

H. Takayama, S. Takahashi, T. Moriya, H. Osada, Y. Iwabuchi, and N. Kanoh, “Detection of Cytochrome P450 Substrates by Using a Small-Molecule Droplet Array on an NADH-Immobilized Solid Surface,” ChemBioChem 12(18), 2748–2752 (2011).
[Crossref] [PubMed]

Clin. Pharmacol. Ther. (1)

D. S. Sitar, A. P. Bras, A. Maksymiuk, A. Pabbies, L. Brande, and B. W. Blakely, “Amantadine acetylation as a biomarker for malignancy,” Clin. Pharmacol. Ther. 79(2), 10 (2006).
[Crossref]

Curr. Opin. Biotechnol. (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[Crossref] [PubMed]

Drug Metab. Dispos. (1)

A. P. Bras, J. Jänne, C. W. Porter, and D. S. Sitar, “Spermidine/Spermine N 1-Acetyltransferase Catalyzes Amantadine Acetylation,” Drug Metab. Dispos. 29(5), 676–680 (2001).
[PubMed]

J. Am. Chem. Soc. (2)

A. Lukach, K. Liu, H. Therien-Aubin, and E. Kumacheva, “Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers,” J. Am. Chem. Soc. 134(45), 18853–18859 (2012).
[Crossref] [PubMed]

A. Lee, G. F. S. Andrade, A. Ahmed, M. L. Souza, N. Coombs, E. Tumarkin, K. Liu, R. Gordon, A. G. Brolo, and E. Kumacheva, “Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 133(19), 7563–7570 (2011).
[Crossref] [PubMed]

J. Cell. Mol. Med. (1)

T. Thomas and T. J. Thomas, “Polyamine metabolism and cancer,” J. Cell. Mol. Med. 7(2), 113–126 (2003).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[Crossref]

J. Phys. Chem. C (2)

A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. I. Park, R. Gordon, A. G. Brolo, and E. Kumacheva, “Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity,” J. Phys. Chem. C 116(9), 5538–5545 (2012).
[Crossref]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

J. Raman Spectrosc. (3)

T. Vo-Dinh, L. R. Allain, and D. L. Stokes, “Cancer gene detection using surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 33(7), 511–516 (2002).
[Crossref]

R. Y. Sato-Berrú and J. M. Saniger, “Application of principal component analysis to discriminate the Raman spectra of functionalized multiwalled carbon nanotubes,” J. Raman Spectrosc. 37(11), 1302–1306 (2006).
[Crossref]

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs,” J. Raman Spectrosc. 44(2), 240–246 (2013).
[Crossref]

Nano Lett. (1)

R. W. Taylor, R. J. Coulston, F. Biedermann, S. Mahajan, J. J. Baumberg, and O. A. Scherman, “In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor,” Nano Lett. 13(12), 5985–5990 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

S. L. Smitha, K. G. Gopchandran, T. R. Ravindran, and V. S. Prasad, “Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates,” Nanotechnology 22(26), 265705 (2011).
[Crossref] [PubMed]

Nat. Protoc. (1)

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8(4), 677–692 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

S. Mahajan, T. C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, “Raman and SERS spectroscopy of cucurbit[n]urils,” Phys. Chem. Chem. Phys. 12(35), 10429–10433 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Other (5)

D. S. Sitar and A. P. M. Bras, “Method for Assaying Non-Spermine/Spermidine Activity of N1-Acetyltransferase (SSAT),” U.S. Patent, US6811967 B2, 2004.

N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to infrared and Raman spectroscopy (Elsevier, 1990).

S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, and O. A. Scherman, “Gold Nanorods with Sub-Nanometer Separation using Cucurbit[n]uril for SERS Applications,” Small doi (posted 28 July 2014, in press).
[Crossref]

D. S. Sitar, A. P. Bras, A. Maksymiuk, K. M. Cheng, and H. Zhou, “Progress in the development of SSAT1 activity as a biomarker for diagnosis of cancer,” presented at the BIT Life Sciences’ Annual World Cancer Congress, Beijing, 22–25 Jun. 2009.

R. L. McCreery, Raman spectroscopy for chemical analysis (John Wiley & Sons, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The Raman measurement setup. (b) The DF scattering measurement setup. WLS = white light source, OF = optical fiber, C = collimator, MO = microscope objective lens, L = lens, BS = beam splitter.
Fig. 2
Fig. 2 (a) The prepared sample picture. The dried AuNR sample is located at the center of the Au-coated slide. The diameter of the spot is about 5 mm. (b) The SEM image of the dried AuNR sample. SEM imaging was carried out at 2 kV.
Fig. 3
Fig. 3 (a) Normalized DF scattering spectrum of the dried AuNR sample. The LSPR peak is located at 775 nm (b) UV-visible absorbance spectrum of the AuNR solution. The longitudinal LSPR peak is located at 760 nm.
Fig. 4
Fig. 4 Raman spectrum of AcAm powder. The characteristic peaks highlighted in cyan.
Fig. 5
Fig. 5 (a) Averaged Raman spectra of the sample prepared with 400 ng/mL AcAm, the blank sample without AcAm, and their difference spectrum (400 ng/mL AcAm – blank). (b) Raman intensity (summed over the 5 selected AcAm peaks) as a function of the AcAm concentration. The noise level highlighted in cyan is the intensity of the blank sample. The detection limit of 16 ng/mL is indicated by the dashed line. The intensity level of the detection limit equals the noise level plus three times of the standard error of the blank sample. The error bar of each data point stands for the standard error of the mean.

Metrics