Abstract

We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions

Rickson C. Mesquita, Steven S. Schenkel, David L. Minkoff, Xiangping Lu, Christopher G. Favilla, Patrick M. Vora, David R. Busch, Malavika Chandra, Joel H. Greenberg, John A. Detre, and A. G. Yodh
Biomed. Opt. Express 4(7) 978-994 (2013)

Fast blood flow monitoring in deep tissues with real-time software correlators

Detian Wang, Ashwin B. Parthasarathy, Wesley B. Baker, Kimberly Gannon, Venki Kavuri, Tiffany Ko, Steven Schenkel, Zhe Li, Zeren Li, Michael T. Mullen, John A. Detre, and Arjun G. Yodh
Biomed. Opt. Express 7(3) 776-797 (2016)

Correction to the Beer-Lambert-Bouguer law for optical absorption

Haim Abitan, Henrik Bohr, and Preben Buchhave
Appl. Opt. 47(29) 5354-5357 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics 73, 076701 (2010).
    [Crossref]
  2. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends in neurosciences 20, 435–442 (1997).
    [Crossref] [PubMed]
  3. R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
    [Crossref]
  4. M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4577–4590 (2011).
    [Crossref] [PubMed]
  5. D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8, 345–365 (2013).
    [Crossref]
  6. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
    [Crossref]
  7. T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4591–4604 (2011).
    [Crossref] [PubMed]
  8. D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4407–4424 (2011).
    [Crossref] [PubMed]
  9. M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4452–4469 (2011).
    [Crossref] [PubMed]
  10. H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4470–4494 (2011).
    [Crossref] [PubMed]
  11. G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4440–4451 (2011).
    [Crossref]
  12. L. Meng, A. Gelb, and D. McDonagh, “Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation,” Anaesthesia 68, 736–741 (2013).
    [Crossref] [PubMed]
  13. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
    [Crossref]
  14. E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
    [Crossref]
  15. D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
    [Crossref]
  16. D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
    [Crossref] [PubMed]
  17. S. R. Arridge, M. Cope, and D. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Physics in medicine and biology 37, 1531 (1992).
    [Crossref] [PubMed]
  18. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
    [Crossref] [PubMed]
  19. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
    [Crossref] [PubMed]
  20. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
    [Crossref] [PubMed]
  21. F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Physics in medicine and biology 49, 1183 (2004).
    [Crossref] [PubMed]
  22. R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” JOSA A 22, 1874–1882 (2005).
    [Crossref] [PubMed]
  23. D. Boas, L. Campbell, and A. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Physical review letters 75, 1855 (1995).
    [Crossref] [PubMed]
  24. D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters 60, 1134 (1988).
    [Crossref] [PubMed]
  25. G. Maret and P. Wolf, “Multiple light scattering from disordered media. the effect of brownian motion of scatterers,” Zeitschrift für Physik B Condensed Matter 65, 409–413 (1987).
    [Crossref]
  26. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
    [Crossref]
  27. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
    [Crossref]
  28. Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Optics express 19, 20301–20315 (2011).
    [Crossref] [PubMed]
  29. C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
    [Crossref] [PubMed]
  30. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
    [Crossref]
  31. M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
    [Crossref]
  32. Y. Shang, K. Gurley, and G. Yu, “Diffuse correlation spectroscopy (dcs) for assessment of tissue blood flow in skeletal muscle: Recent progress,” Anatomy & physiology: current research 3, 128 (2013).
  33. R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
    [Crossref]
  34. R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
    [Crossref]
  35. G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” Journal of biomedical optics 17, 0109011–0109019 (2012).
    [Crossref]
  36. R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
    [Crossref] [PubMed]
  37. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
    [Crossref] [PubMed]
  38. U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
    [Crossref] [PubMed]
  39. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
    [Crossref] [PubMed]
  40. F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
    [Crossref]
  41. J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
    [Crossref] [PubMed]
  42. N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
    [Crossref]
  43. V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).
  44. G. Yu, “Diffuse correlation spectroscopy (dcs): a diagnostic tool for assessing tissue blood flow in vascular-related diseases and therapies,” Current Medical Imaging Reviews 8, 194–210 (2012).
    [Crossref]
  45. P.-A. Lemieux and D. Durian, “Investigating non-gaussian scattering processes by using nth-order intensity correlation functions,” JOSA A 16, 1651–1664 (1999).
    [Crossref]
  46. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
    [Crossref] [PubMed]
  47. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
    [Crossref]
  48. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Applied optics 28, 2331–2336 (1989).
    [Crossref] [PubMed]
  49. M. Cope, “The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants,” Ph.D. thesis, University of London (1991).
  50. R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Applied optics 20, 2097–2107 (1981).
    [Crossref] [PubMed]
  51. J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
    [Crossref] [PubMed]
  52. B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for noninvasive, absolute oximetry in cerebral and extracerebral tissue,” PloS one 8, e64095 (2013).
    [Crossref]
  53. O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Applied optics 49, 6324–6332 (2010).
    [Crossref] [PubMed]
  54. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
    [Crossref] [PubMed]
  55. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
    [Crossref] [PubMed]
  56. T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Applied optics 37, 1958–1972 (1998).
    [Crossref]
  57. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Physics in medicine and biology 44, 2689 (1999).
    [Crossref] [PubMed]
  58. R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
    [Crossref]
  59. J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
    [Crossref]
  60. I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
    [PubMed]
  61. A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Physical Review B 43, 5934 (1991).
    [Crossref]
  62. D. A. Weitz and D. J. Pine, Dynamic light scattering: the method and some applications (Oxford University Press, USA, 1993), vol. 49, chap. Diffusing-wave spectroscopy.
  63. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
    [Crossref] [PubMed]
  64. B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
    [Crossref]
  65. S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
    [Crossref] [PubMed]
  66. E. A. Mellon, R. S. Beesam, M. A. Elliott, and R. Reddy, “Mapping of cerebral oxidative metabolism with mri,” Proceedings of the National Academy of Sciences 107, 11787–11792 (2010).
    [Crossref]
  67. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
    [Crossref]
  68. S. Lloyd-Fox, A. Blasi, and C. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neuroscience & Biobehavioral Reviews 34, 269–284 (2010).
    [Crossref]
  69. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fnirs) development and fields of application,” Neuroimage 63, 921–935 (2012).
    [Crossref] [PubMed]
  70. D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
    [Crossref]
  71. B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann, “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Journal of thermophysics and heat transfer 6, 577–588 (1992).
    [Crossref]
  72. R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
    [Crossref]
  73. F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
    [Crossref] [PubMed]
  74. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. i. modeling of low-level scattering in the cerebrospinal fluid layer,” Applied optics 42, 2906–2914 (2003).
    [Crossref] [PubMed]
  75. A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
    [Crossref] [PubMed]
  76. S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in medicine and biology 58, R37 (2013).
    [Crossref] [PubMed]
  77. D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
    [Crossref] [PubMed]
  78. J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
    [Crossref]
  79. K. Schatzel, Dynamic light scattering: the method and some applications (Oxford University Press, USA, 1993), vol. 49, chap. Single photon correlation techniques.
  80. Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
    [Crossref]
  81. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Applied optics 42, 2915–2922 (2003).
    [Crossref] [PubMed]
  82. A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. i. theory,” JOSA A 23, 2105–2118 (2006).
    [Crossref] [PubMed]
  83. R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
    [Crossref] [PubMed]
  84. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
    [Crossref] [PubMed]
  85. E. M. Buckley, “Cerebral hemodynamics in high-risk neonates probed by diffuse optical spectroscopies (chapter 4.2),” Ph.D. thesis, University of Pennsylvania (2011).
  86. M. N. Kim, “Applications of hybrid diffuse optics for clinical management of adults after brain injury (chapter 3),” Ph.D. thesis, University of Pennsylvania (2013).

2014 (9)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
[Crossref]

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

2013 (7)

S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in medicine and biology 58, R37 (2013).
[Crossref] [PubMed]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for noninvasive, absolute oximetry in cerebral and extracerebral tissue,” PloS one 8, e64095 (2013).
[Crossref]

Y. Shang, K. Gurley, and G. Yu, “Diffuse correlation spectroscopy (dcs) for assessment of tissue blood flow in skeletal muscle: Recent progress,” Anatomy & physiology: current research 3, 128 (2013).

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8, 345–365 (2013).
[Crossref]

L. Meng, A. Gelb, and D. McDonagh, “Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation,” Anaesthesia 68, 736–741 (2013).
[Crossref] [PubMed]

2012 (5)

G. Yu, “Diffuse correlation spectroscopy (dcs): a diagnostic tool for assessing tissue blood flow in vascular-related diseases and therapies,” Current Medical Imaging Reviews 8, 194–210 (2012).
[Crossref]

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” Journal of biomedical optics 17, 0109011–0109019 (2012).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fnirs) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

2011 (10)

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Optics express 19, 20301–20315 (2011).
[Crossref] [PubMed]

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4577–4590 (2011).
[Crossref] [PubMed]

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4591–4604 (2011).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4407–4424 (2011).
[Crossref] [PubMed]

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4452–4469 (2011).
[Crossref] [PubMed]

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4470–4494 (2011).
[Crossref] [PubMed]

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4440–4451 (2011).
[Crossref]

2010 (8)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics 73, 076701 (2010).
[Crossref]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Applied optics 49, 6324–6332 (2010).
[Crossref] [PubMed]

S. Lloyd-Fox, A. Blasi, and C. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neuroscience & Biobehavioral Reviews 34, 269–284 (2010).
[Crossref]

E. A. Mellon, R. S. Beesam, M. A. Elliott, and R. Reddy, “Mapping of cerebral oxidative metabolism with mri,” Proceedings of the National Academy of Sciences 107, 11787–11792 (2010).
[Crossref]

Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
[Crossref]

2009 (1)

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

2008 (3)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
[Crossref] [PubMed]

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

2007 (1)

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
[Crossref]

2006 (4)

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
[Crossref] [PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. i. theory,” JOSA A 23, 2105–2118 (2006).
[Crossref] [PubMed]

2005 (3)

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” JOSA A 22, 1874–1882 (2005).
[Crossref] [PubMed]

2004 (4)

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Physics in medicine and biology 49, 1183 (2004).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

2003 (5)

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. i. modeling of low-level scattering in the cerebrospinal fluid layer,” Applied optics 42, 2906–2914 (2003).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Applied optics 42, 2915–2922 (2003).
[Crossref] [PubMed]

2001 (1)

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
[Crossref] [PubMed]

1999 (3)

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Physics in medicine and biology 44, 2689 (1999).
[Crossref] [PubMed]

P.-A. Lemieux and D. Durian, “Investigating non-gaussian scattering processes by using nth-order intensity correlation functions,” JOSA A 16, 1651–1664 (1999).
[Crossref]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

1998 (1)

T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Applied optics 37, 1958–1972 (1998).
[Crossref]

1997 (2)

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends in neurosciences 20, 435–442 (1997).
[Crossref] [PubMed]

1995 (1)

D. Boas, L. Campbell, and A. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Physical review letters 75, 1855 (1995).
[Crossref] [PubMed]

1994 (2)

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
[Crossref]

1993 (2)

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

1992 (2)

S. R. Arridge, M. Cope, and D. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Physics in medicine and biology 37, 1531 (1992).
[Crossref] [PubMed]

B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann, “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Journal of thermophysics and heat transfer 6, 577–588 (1992).
[Crossref]

1991 (1)

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Physical Review B 43, 5934 (1991).
[Crossref]

1989 (1)

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Applied optics 28, 2331–2336 (1989).
[Crossref] [PubMed]

1988 (2)

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters 60, 1134 (1988).
[Crossref] [PubMed]

1987 (1)

G. Maret and P. Wolf, “Multiple light scattering from disordered media. the effect of brownian motion of scatterers,” Zeitschrift für Physik B Condensed Matter 65, 409–413 (1987).
[Crossref]

1981 (1)

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Applied optics 20, 2097–2107 (1981).
[Crossref] [PubMed]

Ackerson, B.

R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
[Crossref]

B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann, “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Journal of thermophysics and heat transfer 6, 577–588 (1992).
[Crossref]

Andrianopoulos, V.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Arridge, S.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Cope, and D. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Physics in medicine and biology 37, 1531 (1992).
[Crossref] [PubMed]

Athanasiou, T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Athanasopoulos, D.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Baker, W. B.

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics 73, 076701 (2010).
[Crossref]

Barnett, A. H.

A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
[Crossref] [PubMed]

Baumann, H.

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Beeri, M. S.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Beesam, R. S.

E. A. Mellon, R. S. Beesam, M. A. Elliott, and R. Reddy, “Mapping of cerebral oxidative metabolism with mri,” Proceedings of the National Academy of Sciences 107, 11787–11792 (2010).
[Crossref]

Berger, A. J.

R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” JOSA A 22, 1874–1882 (2005).
[Crossref] [PubMed]

Bherer, L.

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
[Crossref] [PubMed]

Bi, R.

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

Blasi, A.

S. Lloyd-Fox, A. Blasi, and C. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neuroscience & Biobehavioral Reviews 34, 269–284 (2010).
[Crossref]

Boas, D.

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

D. Boas, L. Campbell, and A. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Physical review letters 75, 1855 (1995).
[Crossref] [PubMed]

Boas, D. A.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4407–4424 (2011).
[Crossref] [PubMed]

A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

Bonner, R.

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Applied optics 20, 2097–2107 (1981).
[Crossref] [PubMed]

Buckley, E.

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

Buckley, E. M.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
[Crossref]

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

E. M. Buckley, “Cerebral hemodynamics in high-risk neonates probed by diffuse optical spectroscopies (chapter 4.2),” Ph.D. thesis, University of Pennsylvania (2011).

Burnett, M. G.

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

Busch, D. R.

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8, 345–365 (2013).
[Crossref]

Campbell, L.

D. Boas, L. Campbell, and A. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Physical review letters 75, 1855 (1995).
[Crossref] [PubMed]

Carlile, P. M.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Carp, S. A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

Chaikin, P.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters 60, 1134 (1988).
[Crossref] [PubMed]

Chan, S.-T.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

Chance, B.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4591–4604 (2011).
[Crossref] [PubMed]

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends in neurosciences 20, 435–442 (1997).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Applied optics 28, 2331–2336 (1989).
[Crossref] [PubMed]

Chandra, M.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

Chen, L.

Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Optics express 19, 20301–20315 (2011).
[Crossref] [PubMed]

Cherouveim, E.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

Choe, R.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8, 345–365 (2013).
[Crossref]

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics 73, 076701 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

Choi, J.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Cooper, M. T.

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Cope, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

S. R. Arridge, M. Cope, and D. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Physics in medicine and biology 37, 1531 (1992).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

M. Cope, “The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants,” Ph.D. thesis, University of London (1991).

Cucchiara, B. L.

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

Culver, J. P.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

Custo, A.

A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
[Crossref] [PubMed]

Czerniecki, B. J.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Darzi, A. W.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

Delpy, D.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

S. R. Arridge, M. Cope, and D. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Physics in medicine and biology 37, 1531 (1992).
[Crossref] [PubMed]

Delpy, D. T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Applied optics 42, 2915–2922 (2003).
[Crossref] [PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. i. modeling of low-level scattering in the cerebrospinal fluid layer,” Applied optics 42, 2906–2914 (2003).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

DeMichele, A.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Desjardins, M.

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
[Crossref] [PubMed]

Detre, J. A.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

Dietsche, G.

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
[Crossref]

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

Dong, J.

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

Dorri-Nowkoorani, F.

R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
[Crossref]

Dougherty, R.

R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
[Crossref]

B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann, “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Journal of thermophysics and heat transfer 6, 577–588 (1992).
[Crossref]

Dubb, J.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

Durduran, T.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8, 345–365 (2013).
[Crossref]

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics 73, 076701 (2010).
[Crossref]

Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

Durian, D.

P.-A. Lemieux and D. Durian, “Investigating non-gaussian scattering processes by using nth-order intensity correlation functions,” JOSA A 16, 1651–1664 (1999).
[Crossref]

Edlow, B. L.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

Elbert, T.

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
[Crossref]

Elliott, M. A.

E. A. Mellon, R. S. Beesam, M. A. Elliott, and R. Reddy, “Mapping of cerebral oxidative metabolism with mri,” Proceedings of the National Academy of Sciences 107, 11787–11792 (2010).
[Crossref]

Elwell, C.

S. Lloyd-Fox, A. Blasi, and C. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neuroscience & Biobehavioral Reviews 34, 269–284 (2010).
[Crossref]

Elwell, C. E.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Essenpreis, M.

T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Applied optics 37, 1958–1972 (1998).
[Crossref]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

Evans, K. C.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

Fabbri, F.

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Physics in medicine and biology 49, 1183 (2004).
[Crossref] [PubMed]

Fantini, S.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for noninvasive, absolute oximetry in cerebral and extracerebral tissue,” PloS one 8, e64095 (2013).
[Crossref]

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. i. theory,” JOSA A 23, 2105–2118 (2006).
[Crossref] [PubMed]

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Physics in medicine and biology 49, 1183 (2004).
[Crossref] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Applied optics 37, 1958–1972 (1998).
[Crossref]

Favilla, C. G.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

Feldman, M. D.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Feng, T.-C.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

Fenoglio, A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fnirs) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4577–4590 (2011).
[Crossref] [PubMed]

Firbank, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

Fisher, D. S.

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Physical Review B 43, 5934 (1991).
[Crossref]

Fishkin, J. B.

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

Franceschini, M. A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
[Crossref]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4407–4424 (2011).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

Frangos, S.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Friedman, D. H.

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

Furuya, D.

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

Gagnon, L.

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
[Crossref] [PubMed]

Gelb, A.

L. Meng, A. Gelb, and D. McDonagh, “Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation,” Anaesthesia 68, 736–741 (2013).
[Crossref] [PubMed]

Giammarco, J. M.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Gibson, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Gisler, T.

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
[Crossref]

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

Glanzmann, T.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Physics in medicine and biology 44, 2689 (1999).
[Crossref] [PubMed]

Grady, M. S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Grant, P. E.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
[Crossref]

Gratton, E.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

Greenberg, J.

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

Greenberg, J. H.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

Greisen, G.

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4440–4451 (2011).
[Crossref]

Guerrero-Berroa, E.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Gupta, R.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Gurley, K.

Y. Shang, K. Gurley, and G. Yu, “Diffuse correlation spectroscopy (dcs) for assessment of tissue blood flow in skeletal muscle: Recent progress,” Anatomy & physiology: current research 3, 128 (2013).

Habazettl, H.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Hallacoglu, B.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for noninvasive, absolute oximetry in cerebral and extracerebral tissue,” PloS one 8, e64095 (2013).
[Crossref]

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Hamaoka, T.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4591–4604 (2011).
[Crossref] [PubMed]

Han, S. W.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

Haroutunian, V.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

Hebden, J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Henderson, B. H.

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Henry, M. E.

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Physics in medicine and biology 49, 1183 (2004).
[Crossref] [PubMed]

Herbolzheimer, E.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters 60, 1134 (1988).
[Crossref] [PubMed]

Hillman, E.

A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
[Crossref] [PubMed]

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

Ho, J. H.

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

Hueber, D.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Islam, F.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in medicine and biology 58, R37 (2013).
[Crossref] [PubMed]

Jaillon, F.

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
[Crossref]

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

Jain, V.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Jehanne-Lacasse, J.

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
[Crossref] [PubMed]

Jung, K. W.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Kasner, S. E.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Keymel, K.

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Kienle, A.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Physics in medicine and biology 44, 2689 (1999).
[Crossref] [PubMed]

Kim, M.

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

Kim, M. N.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

M. N. Kim, “Applications of hybrid diffuse optics for clinical management of adults after brain injury (chapter 3),” Ph.D. thesis, University of Pennsylvania (2013).

Kissler, J.

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Koban, L.

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

Kocienski-Filip, M.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

Kofke, W. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Lavin, N. A.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Lech, G.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

Lee, K.

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

Leff, D. R.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Lemieux, P.-A.

P.-A. Lemieux and D. Durian, “Investigating non-gaussian scattering processes by using nth-order intensity correlation functions,” JOSA A 16, 1651–1664 (1999).
[Crossref]

Lesage, F.

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
[Crossref] [PubMed]

Leung, T.

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4440–4451 (2011).
[Crossref]

Levine, J. M.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Li, J.

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
[Crossref]

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

Liang, J.

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

Licht, D. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Liebert, A.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

Lloyd-Fox, S.

S. Lloyd-Fox, A. Blasi, and C. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neuroscience & Biobehavioral Reviews 34, 269–284 (2010).
[Crossref]

Louvaris, Z.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Lu, X.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

Lynch, J. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Macdonald, R.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

Maidment, A. D.

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

Majmundar, A. J.

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

Maloney-Wilensky, E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Mantulin, W.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Maret, G.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

G. Maret and P. Wolf, “Multiple light scattering from disordered media. the effect of brownian motion of scatterers,” Zeitschrift für Physik B Condensed Matter 65, 409–413 (1987).
[Crossref]

Martelli, F.

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. i. theory,” JOSA A 23, 2105–2118 (2006).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

McCully, K. K.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4591–4604 (2011).
[Crossref] [PubMed]

McDonagh, D.

L. Meng, A. Gelb, and D. McDonagh, “Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation,” Anaesthesia 68, 736–741 (2013).
[Crossref] [PubMed]

Mellon, E. A.

E. A. Mellon, R. S. Beesam, M. A. Elliott, and R. Reddy, “Mapping of cerebral oxidative metabolism with mri,” Proceedings of the National Academy of Sciences 107, 11787–11792 (2010).
[Crossref]

Meng, L.

L. Meng, A. Gelb, and D. McDonagh, “Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation,” Anaesthesia 68, 736–741 (2013).
[Crossref] [PubMed]

Mesquita, R.

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

Mesquita, R. C.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Michalos, A.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Middleton, A. A.

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Physical Review B 43, 5934 (1991).
[Crossref]

Mies, C.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Minkoff, D. L.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

Mohler, E. R.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

Möller, M.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

Montenegro, L. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Moss, H. E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Mullen, M.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

Muthalib, M.

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4577–4590 (2011).
[Crossref] [PubMed]

Naim, M. Y.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Nicolson, S. C.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Nijland, M. J.

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

Ninck, M.

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

Niwayama, M.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4591–4604 (2011).
[Crossref] [PubMed]

Nobbmann, U.

R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
[Crossref]

B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann, “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Journal of thermophysics and heat transfer 6, 577–588 (1992).
[Crossref]

Nossal, R.

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Applied optics 20, 2097–2107 (1981).
[Crossref] [PubMed]

Obrig, H.

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4470–4494 (2011).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
[Crossref] [PubMed]

Okada, E.

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. i. modeling of low-level scattering in the cerebrospinal fluid layer,” Applied optics 42, 2906–2914 (2003).
[Crossref] [PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Applied optics 42, 2915–2922 (2003).
[Crossref] [PubMed]

Okada, H.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Orihuela-Espina, F.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

Parthasarathy, A. B.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
[Crossref]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Applied optics 37, 1958–1972 (1998).
[Crossref]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Applied optics 28, 2331–2336 (1989).
[Crossref] [PubMed]

Pine, D.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters 60, 1134 (1988).
[Crossref] [PubMed]

Pine, D. J.

D. A. Weitz and D. J. Pine, Dynamic light scattering: the method and some applications (Oxford University Press, USA, 1993), vol. 49, chap. Diffusing-wave spectroscopy.

Polzonetti, C.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Pucci, O.

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Applied optics 49, 6324–6332 (2010).
[Crossref] [PubMed]

Putt, M.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

Putt, M. E.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fnirs) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4577–4590 (2011).
[Crossref] [PubMed]

Radhakrishnan, H.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

Ramanujam, N.

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

Reddy, R.

E. A. Mellon, R. S. Beesam, M. A. Elliott, and R. Reddy, “Mapping of cerebral oxidative metabolism with mri,” Proceedings of the National Academy of Sciences 107, 11787–11792 (2010).
[Crossref]

Reguigui, N.

R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
[Crossref]

B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann, “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Journal of thermophysics and heat transfer 6, 577–588 (1992).
[Crossref]

Rigual, N.

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Rinneberg, H.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
[Crossref] [PubMed]

Roche-Labarbe, N.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

Rohrbach, D.

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Rosen, M. A.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

Rosenberg, I. H.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

Roussos, C.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Saager, R. B.

R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” JOSA A 22, 1874–1882 (2005).
[Crossref] [PubMed]

Safonova, L. P.

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Sassaroli, A.

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for noninvasive, absolute oximetry in cerebral and extracerebral tissue,” PloS one 8, e64095 (2013).
[Crossref]

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. i. theory,” JOSA A 23, 2105–2118 (2006).
[Crossref] [PubMed]

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Physics in medicine and biology 49, 1183 (2004).
[Crossref] [PubMed]

Schatzel, K.

K. Schatzel, Dynamic light scattering: the method and some applications (Oxford University Press, USA, 1993), vol. 49, chap. Single photon correlation techniques.

Schenkel, S.

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

Schenkel, S. S.

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

Schnall, M. D.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Schwab, P. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Selb, J.

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

Shah, Q.

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

Shang, Y.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

Y. Shang, K. Gurley, and G. Yu, “Diffuse correlation spectroscopy (dcs) for assessment of tissue blood flow in skeletal muscle: Recent progress,” Anatomy & physiology: current research 3, 128 (2013).

Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Optics express 19, 20301–20315 (2011).
[Crossref] [PubMed]

Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
[Crossref]

Shaul, M.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Simon, M. C.

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

Skipetrov, S. E.

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

Skuli, N.

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

Smith, M.

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4452–4469 (2011).
[Crossref] [PubMed]

Soo, K.-C.

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

St Lawrence, K.

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Applied optics 49, 6324–6332 (2010).
[Crossref] [PubMed]

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

Steinbrink, J.

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4470–4494 (2011).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
[Crossref] [PubMed]

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

Sunar, U.

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

Symons, T.

Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
[Crossref]

Tchou, J.

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Tchou, J. C.

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

Thong, P. S.

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

Toborek, M.

Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Optics express 19, 20301–20315 (2011).
[Crossref] [PubMed]

Toronov, V.

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Applied optics 49, 6324–6332 (2010).
[Crossref] [PubMed]

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Tracy, E.

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Troen, A. M.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Tromberg, B. J.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

Tsay, T.-T.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

Van Der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

Villringer, A.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
[Crossref] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends in neurosciences 20, 435–442 (1997).
[Crossref] [PubMed]

Vogiatzis, I.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Vora, P. M.

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

Wabnitz, H.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
[Crossref] [PubMed]

Wagner, H.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Wagner, P. D.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Wang, J.

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Wehrli, F. W.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Weitz, D.

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters 60, 1134 (1988).
[Crossref] [PubMed]

Weitz, D. A.

D. A. Weitz and D. J. Pine, Dynamic light scattering: the method and some applications (Oxford University Press, USA, 1993), vol. 49, chap. Diffusing-wave spectroscopy.

Wells Iii, W. M.

A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
[Crossref] [PubMed]

Wilson, B. C.

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Applied optics 28, 2331–2336 (1989).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4440–4451 (2011).
[Crossref]

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Wolf, P.

G. Maret and P. Wolf, “Multiple light scattering from disordered media. the effect of brownian motion of scatterers,” Zeitschrift für Physik B Condensed Matter 65, 409–413 (1987).
[Crossref]

Wolf, R. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

Wysocki, M.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

Xing, X.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Yang, G.-Z.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

Yodh, A.

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

D. Boas, L. Campbell, and A. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Physical review letters 75, 1855 (1995).
[Crossref] [PubMed]

Yodh, A. G.

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
[Crossref]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8, 345–365 (2013).
[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics 73, 076701 (2010).
[Crossref]

Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

Yu, G.

Y. Shang, K. Gurley, and G. Yu, “Diffuse correlation spectroscopy (dcs) for assessment of tissue blood flow in skeletal muscle: Recent progress,” Anatomy & physiology: current research 3, 128 (2013).

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

G. Yu, “Diffuse correlation spectroscopy (dcs): a diagnostic tool for assessing tissue blood flow in vascular-related diseases and therapies,” Current Medical Imaging Reviews 8, 194–210 (2012).
[Crossref]

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” Journal of biomedical optics 17, 0109011–0109019 (2012).
[Crossref]

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Optics express 19, 20301–20315 (2011).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

Zakynthinos, S.

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Zhou, C.

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Academic radiology (1)

D. R. Busch, R. Choe, T. Durduran, D. H. Friedman, W. B. Baker, A. D. Maidment, M. A. Rosen, M. D. Schnall, and A. G. Yodh, “Blood flow reduction in breast tissue due to mammographic compression,” Academic radiology 21, 151–161 (2014).
[Crossref] [PubMed]

Anaesthesia (1)

L. Meng, A. Gelb, and D. McDonagh, “Changes in cerebral tissue oxygen saturation during anaesthetic-induced hypotension: an interpretation based on neurovascular coupling and cerebral autoregulation,” Anaesthesia 68, 736–741 (2013).
[Crossref] [PubMed]

Anatomy & physiology: current research (1)

Y. Shang, K. Gurley, and G. Yu, “Diffuse correlation spectroscopy (dcs) for assessment of tissue blood flow in skeletal muscle: Recent progress,” Anatomy & physiology: current research 3, 128 (2013).

Applied optics (7)

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Applied optics 28, 2331–2336 (1989).
[Crossref] [PubMed]

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Applied optics 20, 2097–2107 (1981).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Applied Optics 43, 3037–3047 (2004).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Applied optics 37, 1958–1972 (1998).
[Crossref]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Applied optics 49, 6324–6332 (2010).
[Crossref] [PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. i. modeling of low-level scattering in the cerebrospinal fluid layer,” Applied optics 42, 2906–2914 (2003).
[Crossref] [PubMed]

A. Custo, W. M. Wells Iii, A. H. Barnett, E. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Applied optics 45, 4747–4755 (2006).
[Crossref] [PubMed]

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. ii. effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Applied optics 42, 2915–2922 (2003).
[Crossref] [PubMed]

Biomedical optics express (3)

Y. Shang, T. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomedical optics express 1, 500–511 (2010).
[Crossref]

R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomedical optics express 4, 978–994 (2013).
[Crossref] [PubMed]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomedical optics express 1, 1173–1187 (2010).
[Crossref]

Breast Cancer Res. Tr. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Tr. 108, 9–22 (2008).
[Crossref]

Current Medical Imaging Reviews (1)

G. Yu, “Diffuse correlation spectroscopy (dcs): a diagnostic tool for assessing tissue blood flow in vascular-related diseases and therapies,” Current Medical Imaging Reviews 8, 194–210 (2012).
[Crossref]

JOSA A (6)

P.-A. Lemieux and D. Durian, “Investigating non-gaussian scattering processes by using nth-order intensity correlation functions,” JOSA A 16, 1651–1664 (1999).
[Crossref]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” JOSA A 11, 2727–2741 (1994).
[Crossref] [PubMed]

J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” JOSA A 10, 127–140 (1993).
[Crossref]

D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” JOSA A 22, 1874–1882 (2005).
[Crossref] [PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. i. theory,” JOSA A 23, 2105–2118 (2006).
[Crossref] [PubMed]

Journal of biomedical optics (6)

J. Dong, R. Bi, J. H. Ho, P. S. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast fourier transform-based software autocorrelator,” Journal of biomedical optics 17, 0970041–0970049 (2012).
[Crossref]

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” Journal of biomedical optics 17, 0109011–0109019 (2012).
[Crossref]

R. C. Mesquita, M. Putt, M. Chandra, G. Yu, X. Xing, S. W. Han, G. Lech, Y. Shang, T. Durduran, C. Zhou, A. G. Yodh, and E. R. Mohler, “Diffuse optical characterization of an exercising patient group with peripheral artery disease,” Journal of biomedical optics 18, 057007 (2013).
[Crossref]

J. Choi, V. Toronov, U. Wolf, D. Hueber, L. P. Safonova, R. Gupta, C. Polzonetti, M. Wolf, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” Journal of biomedical optics 9, 221–229 (2004).
[Crossref] [PubMed]

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. S. Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” Journal of biomedical optics 17, 0814061–0814068 (2012).
[Crossref]

S. Ijichi, T. Kusaka, K. Isobe, K. Kawada, T. Imai, S. Itoh, F. Islam, K. Okubo, H. Okada, and M. Namba, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” Journal of biomedical optics 10, 024026 (2005).
[Crossref] [PubMed]

Journal of cerebral blood flow & metabolism (1)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of cerebral blood flow & metabolism 23, 911–924 (2003).
[Crossref]

Journal of Quantitative Spectroscopy and Radiative Transfer (1)

R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer 52, 713–727 (1994).
[Crossref]

Journal of thermophysics and heat transfer (1)

B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann, “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Journal of thermophysics and heat transfer 6, 577–588 (1992).
[Crossref]

Neurocritical care (2)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical care 12, 173–180 (2010).
[Crossref]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocritical care 20, 443–453 (2014).
[Crossref]

NeuroImage (2)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage 85, 51–63 (2014).
[Crossref]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fnirs) development and fields of application,” Neuroimage 63, 921–935 (2012).
[Crossref] [PubMed]

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G.-Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fnirs) studies,” NeuroImage 54, 2922–2936 (2011).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85, 279–286 (2014).
[Crossref]

Neurophotonics (2)

J. Selb, D. A. Boas, S.-T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia,” Neurophotonics 1, 015005 (2014).
[Crossref]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1, 011009 (2014).
[Crossref]

Neuroscience & Biobehavioral Reviews (1)

S. Lloyd-Fox, A. Blasi, and C. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neuroscience & Biobehavioral Reviews 34, 269–284 (2010).
[Crossref]

Optics express (6)

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics express 14, 10181–10194 (2006).
[Crossref] [PubMed]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Optics express 16, 15514–15530 (2008).
[Crossref] [PubMed]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Optics express 14, 1125–1144 (2006).
[Crossref] [PubMed]

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured noninvasively by diffusing-wave spectroscopy,” Optics Express 15, 6643–6650 (2007).
[Crossref]

U. Sunar, D. Rohrbach, N. Rigual, E. Tracy, K. Keymel, M. T. Cooper, H. Baumann, and B. H. Henderson, “Monitoring photobleaching and hemodynamic responses to hpph-mediated photodynamic therapy of head and neck cancer: a case report,” Optics express 18, 14969–14978 (2010).
[Crossref] [PubMed]

Y. Shang, L. Chen, M. Toborek, and G. Yu, “Diffuse optical monitoring of repeated cerebral ischemia in mice,” Optics express 19, 20301–20315 (2011).
[Crossref] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemo-dynamics in acute stroke patients,” Optics express 17, 3884–3902 (2009).
[Crossref]

Optics letters (3)

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Optics letters 29, 1766–1768 (2004).
[Crossref] [PubMed]

J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Optics letters 33, 2233–2235 (2008).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Optics letters 30, 2915–2917 (2005).
[Crossref] [PubMed]

PET clinics (1)

D. R. Busch, R. Choe, T. Durduran, and A. G. Yodh, “Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics,” PET clinics 8, 345–365 (2013).
[Crossref]

Philos. T. Roy. Soc. A (1)

R. Mesquita, T. Durduran, G. Yu, E. Buckley, M. Kim, C. Zhou, R. Choe, U. Sunar, and A. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. T. Roy. Soc. A 369, 4390–4406 (2011).
[Crossref]

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (6)

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4577–4590 (2011).
[Crossref] [PubMed]

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4591–4604 (2011).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4407–4424 (2011).
[Crossref] [PubMed]

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4452–4469 (2011).
[Crossref] [PubMed]

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4470–4494 (2011).
[Crossref] [PubMed]

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 4440–4451 (2011).
[Crossref]

Physical Review B (1)

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Physical Review B 43, 5934 (1991).
[Crossref]

Physical review letters (1)

D. Boas, L. Campbell, and A. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Physical review letters 75, 1855 (1995).
[Crossref] [PubMed]

D. Pine, D. Weitz, P. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters 60, 1134 (1988).
[Crossref] [PubMed]

Physics in medicine and biology (8)

F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Physics in medicine and biology 49, 1183 (2004).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Physics in medicine and biology 33, 1433 (1988).
[Crossref] [PubMed]

S. R. Arridge, M. Cope, and D. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Physics in medicine and biology 37, 1531 (1992).
[Crossref] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. Van Der Zee, and D. Delpy, “A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Physics in medicine and biology 38, 1859 (1993).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in nir absorption using a layered model of the human head,” Physics in medicine and biology 46, 879 (2001).
[Crossref] [PubMed]

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Physics in medicine and biology 44, 2689 (1999).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in medicine and biology 58, R37 (2013).
[Crossref] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Physics in medicine and biology 44, 1543 (1999).
[Crossref] [PubMed]

PloS one (2)

B. Hallacoglu, A. Sassaroli, and S. Fantini, “Optical characterization of two-layered turbid media for noninvasive, absolute oximetry in cerebral and extracerebral tissue,” PloS one 8, e64095 (2013).
[Crossref]

R. Choe, M. E. Putt, P. M. Carlile, T. Durduran, J. M. Giammarco, D. R. Busch, K. W. Jung, B. J. Czerniecki, J. Tchou, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, A. DeMichele, and A. G. Yodh, “Optically measured microvascular blood flow contrast of malignant breast tumors,” PloS one 9, e99683 (2014).
[Crossref] [PubMed]

Proceedings of the National Academy of Sciences (2)

R. Choe, T. Durduran, G. Yu, M. J. Nijland, B. Chance, A. G. Yodh, and N. Ramanujam, “Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero,” Proceedings of the National Academy of Sciences 100, 12950–12954 (2003).
[Crossref]

E. A. Mellon, R. S. Beesam, M. A. Elliott, and R. Reddy, “Mapping of cerebral oxidative metabolism with mri,” Proceedings of the National Academy of Sciences 107, 11787–11792 (2010).
[Crossref]

Reports on Progress in Physics (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics 73, 076701 (2010).
[Crossref]

Stroke (1)

C. G. Favilla, R. C. Mesquita, M. Mullen, T. Durduran, X. Lu, M. N. Kim, D. L. Minkoff, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation,” Stroke 45, 1269–1274 (2014).
[Crossref] [PubMed]

The Journal of physiology (1)

I. Vogiatzis, Z. Louvaris, H. Habazettl, D. Athanasopoulos, V. Andrianopoulos, E. Cherouveim, H. Wagner, C. Roussos, P. D. Wagner, and S. Zakynthinos, “Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes,” The Journal of physiology 589, 4027–4039 (2011).
[PubMed]

Trends in neurosciences (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends in neurosciences 20, 435–442 (1997).
[Crossref] [PubMed]

Zeitschrift für Physik B Condensed Matter (1)

G. Maret and P. Wolf, “Multiple light scattering from disordered media. the effect of brownian motion of scatterers,” Zeitschrift für Physik B Condensed Matter 65, 409–413 (1987).
[Crossref]

Other (6)

D. A. Weitz and D. J. Pine, Dynamic light scattering: the method and some applications (Oxford University Press, USA, 1993), vol. 49, chap. Diffusing-wave spectroscopy.

M. Cope, “The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants,” Ph.D. thesis, University of London (1991).

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by mri and optics,” Journal of Cerebral Blood Flow & Metabolism (2013).

E. M. Buckley, “Cerebral hemodynamics in high-risk neonates probed by diffuse optical spectroscopies (chapter 4.2),” Ph.D. thesis, University of Pennsylvania (2011).

M. N. Kim, “Applications of hybrid diffuse optics for clinical management of adults after brain injury (chapter 3),” Ph.D. thesis, University of Pennsylvania (2013).

K. Schatzel, Dynamic light scattering: the method and some applications (Oxford University Press, USA, 1993), vol. 49, chap. Single photon correlation techniques.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(A) Schematic for blood flow monitoring in a homogeneous, semi-infinite turbid tissue (see text for details). Blood cell (e.g., red disks at time t and light-red disks at time t + τ) motion induces temporal fluctuations in the scattered light intensity, I(t), at the light detector (panel B). These intensity fluctuations are characterized by the normalized intensity autocorrelation function (g2(τ)). (C) The decay of the intensity autocorrelation function curves is related to tissue blood flow.

Fig. 2
Fig. 2

(A) The semi-infinite multiplicative weighting factors (see Eq. (4)) for tissue scattering (ds), for tissue absorption (da), and for tissue blood flow (dF, right vertical-axis). They are plotted as a function of the correlation time, τ, for source-detector separation, ρ = 3 cm, and optical wavelength, λ = 785 nm, given a typical set of cerebral tissue properties, i.e., μ a 0 = 0.1 cm 1, μ s 0 = 8 cm 1, F0 = 10−8 cm2/s, n = 1.4, nout = 1. (B) The semi-infinite DCS Modified Beer-Lambert components dF (τ, ρF, ds(τ, ρμ′s, and |da(τ, ρμa|, plotted as a function of τ for a 10% increase in blood flow, tissue scattering, and tissue absorption, respectively. On the right vertical-axis is the intensity autocorrelation function, g 2 0 ( τ ), for β = 0.5. Given the same fractional change in tissue properties, the DCS signal is most sensitive to scattering changes, followed by flow changes, and finally absorption changes. In many applications, however, the scattering changes associated with hemodynamic perturbations are negligible, e.g., such as an increase in blood flow and blood volume; in these situations the scattering component can be neglected (see text).

Fig. 3
Fig. 3

(A) Two-layer tissue model of the head and (B) parallel plane two-layer tissue geometry.

Fig. 4
Fig. 4

(A) The two-layer multiplicative weighting factors (see Eq. (9)) for dF,c and dF,ec (right vertical-axis); and for da,c, da,ec, ds,c, and ds,ec. They are plotted as a function of the correlation time, τ, for source-detector separation, ρ = 3 cm, and optical wavelength, λ = 785 nm, given a set of typical extra-cerebral and cerebral tissue properties [51], i.e., μ a , c 0 = 0.16, μ a , ec 0 = 0.12, μ s , c 0 = 6, μ s , ec 0 = 10 cm 1; F c 0 = 10 8, F ec 0 = 10 9 cm 2 / s; = 1 cm, n = 1.4, and nout = 1. (B) The two-layer DCS Modified Beer-Lambert components dF,cΔFc, dF,ecΔFec, |da,cΔμa,c|, and |da,ecΔμa,ec|, plotted as a function of τ for a 10% increase in each parameter. On the right vertical-axis is the intensity autocorrelation function, g 2 0 ( τ ), for β = 0.5. Notice that at shorter delay-times for ρ = 3 cm, the change in DCS optical density is equally sensitive to changes in cerebral blood flow, extra-cerebral blood flow, and cerebral absorption. The change in DCS optical density (ODDCS) is less sensitive, however, to changes in extra-cerebral absorption. (C) The ratio of the cerebral (c) and extra-cerebral (ec) flow components in the DCS optical density perturbation, ΔODDCS(τ) (Eq. (9)), for 4 separations, ρ = 0.5, 1, 2, and 3 cm. These data are plotted as a function of τ assuming a 10% increase in cerebral and extra-cerebral blood flow. For the shorter separations of 0.5 and 1 cm, the ratio is substantially less than one; in this case, the DCS optical density is predominantly sensitive to the extra-cerebral layer. At the 3 cm separation, the DCS optical density is more sensitive to cerebral blood flow than extra-cerebral blood flow at the short delay-times, i.e., the ratio is greater than one. However, at longer delay-times, the ratio decreases. (D) The ratio of the cerebral and extra-cerebral absorption components in the two-layer Modified Beer-Lambert law for DOS/NIRS, plotted as a function of ρ for a 10% increase in cerebral and extra-cerebral absorption. 〈Lc and 〈Lec are the cerebral and extra-cerebral partial pathlengths [18, 21]. Notice from panels (C) and (D) that the DCS optical density is more sensitive to the cerebral layer than the NIRS optical density is, consistent with findings in work of reference [59].

Fig. 5
Fig. 5

(A) Simulated semi-infinite intensity autocorrelation curves (mean ± SD across N = 10k curves) plotted as a function of the delay-time τ for a −50% and +50% change in flow while tissue optical properties were held constant. The source-detector separation, light wavelength, and baseline tissue properties are ρ = 3 cm, λ = 785 nm, and μ a 0 = 0.1 cm 1, μ s 0 = 8 cm 1, F0 = 10−8 cm2/s, n = 1.4, nout = 1, respectively. The simulated DCS data were generated from the semi-infinite solution of the correlation diffusion equation (Eq. (5)) with added noise derived from a correlation noise model [63]. The correlation noise model was evaluated at a baseline DCS intensity of 50k photons a second and an averaging time of 2.5 seconds. (B) Fractional blood flow changes (mean ± SD) estimated by applying the semi-infinite DCS Modified Beer-Lambert law, i.e., rbf(τ) = ΔODDCS(τ)/(dF (τ)F0) (Eq. (4)), to the simulated data. To appreciate the simulated results more generally, these fractional blood flow changes are plotted against the dimensionless delay-time τγ0F0. Here, (γ0F0)−1, where γ 0 K 0 0 ( μ s 0 / μ a 0 ) k 0 2 r 1 0 (see Eq. (B.4)), is approximately the characteristic decay time of the baseline electric field autocorrelation function (see Appendix 2).

Fig. 6
Fig. 6

(A) To monitor hemodynamics in the semi-infinite geometry, a juvenile pig’s scalp was reflected, and 2.5 mm burr holes were drilled through the skull for placement of 90-degree optical fibers. A DOS/NIRS source-detector pair (red circles) measured cerebral tissue absorption, and a DCS source-detector pair (black circles) measured cerebral blood flow. The source-detector separation of both pairs is ρ ≈ 1.5 cm. (B) Schematic showing the timeline of the experiment in minutes. Venous infusion of dinitrophenol (DNP, 9 mg/kg) dramatically stimulated cerebral oxygen metabolism and induced a 200% increase in cerebral blood flow. The DCS and DOS techniques were interleaved to measure blood flow and tissue absorption every 7 seconds. (C) Anterior-posterior slice of an anatomical MRI scan of a pig with similar weight to the juvenile pig used in this measurement. The burr holes for the two optical fibers closest to the midline in panel (A) have been artificially overlayed on this scan.

Fig. 7
Fig. 7

Temporal fractional cerebral blood flow changes induced by injection of the drug dinitrophenol (DNP) in a juvenile pig. The baseline flow is F0 = 5.34 × 10−8 cm2/s, which is the average blood flow index over the 18 minute time interval between the vertical dashed lines. Cerebral blood flow changes were calculated from nonlinear fits to the semi-infinite correlation diffusion solution (Eq. (5)) and from the semi-infinite DCS Modified Beer-Lambert law (Eq. (4)) using (A) multiple delay-times, i.e., τ < 5.5 μs, which corresponds to g 2 0 ( τ ) > 1.25, and (B) a single delay-time, i.e., τ = 3.8 μs, which corresponds to g 2 0 ( τ ) = 1.3. Measured tissue absorption changes (Fig. 8(B)) were incorporated in both the correlation diffusion fit and the DCS Modified Beer-Lambert law. Tissue scattering was assumed to remain constant at μ′s = 8 cm−1, and the red and blue shaded regions indicate quasi steady-state temporal intervals that are analyzed further in Fig. 8.

Fig. 8
Fig. 8

(A) Mean fractional cerebral blood flow changes (averaged across indicated time intervals in the legend) as a function of the dimensionless delay-time τγ0F0 (see Fig. 5 caption) in a juvenile pig. (B) The pig’s cerebral absorption over time, which was calculated from applying the semi-infinite Modified Beer-Lambert law (Eq. (1)) to the measured DOS/NIRS intensity changes from baseline. Note that the shaded regions in panel (B) indicate the temporal intervals averaged over in panel (A). The cerebral blood flow changes in panel (A) were obtained from applying the semi-infinite DCS Modified Beer-Lambert law (Eq. (4)) to the measured intensity autocorrelation curves and the measured cerebral absorption changes. The horizontal solid and dashed black lines in panel (A) indicate the fractional blood flow changes (Mean ± SD) obtained from fitting the intensity autocorrelation curves to the non-linear semi-infinite correlation diffusion solution (Eq. (5)).

Fig. 9
Fig. 9

Fractional blood flow changes (i.e., F/F0 − 1) computed from applying the semi-infinite DCS Modified Beer-Lambert law (Eq. (4)) with assumed baseline optical properties of μ a 0 (vertical axis) and μ s 0 (horizontal axis) to semi-infinite simulated data with noise (N = 1k curves). The actual blood flow and absorption changes are (A) 50% and 15%, and (B) −50% and −15%, respectively. Tissue scattering was constant, and the actual baseline properties (including simulated noise parameters) are identical to those in Fig. 5, e.g., μ a 0 = 0.1, μ s 0 = 8 cm 1 (denoted by dashed lines). To compute the absorption changes from the simulated data, the Modified Beer-Lambert law (Eq. (1)) was employed. The differential pathlength (〈L〉) in Eq. (1) was calculated from the assumed baseline optical properties [84]. Finally, the baseline flow index, F0, was extracted from a nonlinear fit of the simulated baseline data to the semi-infinite correlation diffusion solution (Eq. (5)) evaluated at the assumed baseline optical properties. Errors in the assumed baseline optical properties only have small effects on the computed fractional flow change. Note that the computed fractional blood flow changes are not exactly 50% and −50% when the exact optical properties are assumed because of small errors arising from truncating the tissue absorption terms in the Taylor Series expansion of the DCS optical density (Eq. (3)) to first order.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δ OD = log ( I ( t ) I 0 ) L Δ μ a ( t ) + ( μ a 0 μ s 0 ) L Δ μ s ( t ) L Δ μ a ( t ) .
G 1 ( τ ) = 3 4 π tr [ exp ( K ( τ ) r 1 ) r 1 exp ( K ( τ ) r b ) r b ] .
OD DCS ( τ , ρ ) OD DCS 0 ( τ , ρ ) + OD DCS 0 F Δ F + OD DCS 0 μ a Δ μ a + OD DCS 0 μ s Δ μ s .
Δ OD DCS ( τ , ρ ) = log ( g 2 ( τ , ρ ) 1 g 0 2 ( τ , ρ ) 1 ) d F ( τ , ρ ) Δ F + d a ( τ , ρ ) Δ μ a + d s ( τ , ρ ) Δ μ s .
g 1 ( τ ) = exp ( K ( τ ) r 1 ) / r 1 exp ( K ( τ ) r b ) / r b exp ( K 0 r 1 ) / r 1 exp ( K 0 r b ) / r b ,
d F ( τ , ρ ) = 6 μ s 0 ( μ s 0 + μ a 0 ) k 0 2 τ K 0 ( τ ) [ exp ( K 0 ( τ ) r 1 0 ) exp ( K 0 ( τ ) r b 0 ) exp ( K 0 ( τ ) r 1 0 ) / r 1 0 exp ( K 0 ( τ ) r b 0 ) / r b 0 ] .
OD DCS ( τ , ρ ) OD DCS 0 ( τ , ρ ) + k = 1 N [ OD DCS 0 F k Δ F k + OD DCS 0 μ a , k Δ μ a , k + OD DCS 0 μ s , k Δ μ s , k ] .
log ( g 2 ( τ , ρ ) 1 g 0 2 ( τ , ρ ) 1 ) k = 1 N [ d F , k ( τ , ρ ) Δ F k + d a , k ( τ , ρ ) Δ μ a , k + d s , k ( τ , ρ ) Δ μ s , k ] ,
Δ OD DCS ( τ , ρ ) = log ( g 2 ( τ , ρ ) 1 g 2 0 ( τ , ρ ) 1 ) d F , c ( τ , ρ ) Δ F c + d F , ec ( τ , ρ ) Δ F ec + d a , c ( τ , ρ ) Δ μ a , c + d a , ec ( τ , ρ ) Δ μ a , ec + d s , c ( τ , ρ ) Δ μ s , c + d s , ec ( τ , ρ ) Δ μ s , ec .
g 1 ( τ ) = G 1 ( τ ) / G 1 ( 0 ) , G 1 ( τ ) = 1 2 π 0 G ˜ 1 ( τ ) s J 0 ( s ρ ) d s , G ˜ 1 ( τ ) = sinh [ κ ec ( z b + z 0 ) ] D ec κ ec D ec κ ec cosh [ κ ec ] + D c κ c sinh [ κ ec ] D ec κ ec cosh [ κ ec ( + z b ) ] + D c κ c sinh [ κ ec ( + z b ) ] sinh [ κ ec z 0 ] D ec κ ec ,
δ ( rbf ( τ ) ) = 1 d F ( τ ) F 0 δ ( Δ OD DCS ( τ ) ) = 1 d F ( τ ) F 0 δ ( g 2 ( τ ) 1 ) | g 2 ( τ ) 1 | .
d F ( τ , ρ ) OD DCS 0 F = F [ log ( g 2 0 ( τ , ρ ) 1 ) ] = F [ log ( β [ g 1 0 ( τ , ρ ) ] 2 ) ] = F [ log ( β ) 2 log ( g 1 0 ( τ , ρ ) ) ] = 2 F [ log ( g 1 0 ( τ , ρ ) ) ] .
d a ( τ , ρ ) = 2 μ a [ log ( g 1 0 ( τ , ρ ) ) ] , d s ( τ , ρ ) = 2 μ s [ log ( g 1 0 ( τ , ρ ) ) ] .
d F ( τ , ρ ) = 2 Δ F log ( g 1 ( τ , ρ , F 0 Δ F / 2 , μ a 0 , μ s 0 ) g 1 ( τ , ρ , F 0 + Δ F / 2 , μ a 0 , μ s 0 ) ) , d a ( τ , ρ ) = 2 Δ μ a log ( g 1 ( τ , ρ , F 0 , μ a 0 Δ μ a / 2 , μ s 0 ) g 1 ( τ , ρ , F 0 , μ a 0 + Δ μ a / 2 , μ s 0 ) ) , d s ( τ , ρ ) = 2 Δ μ s log ( g 1 ( τ , ρ , F 0 , μ a 0 , μ s 0 Δ μ s / 2 ) g 1 ( τ , ρ , F 0 , μ a 0 , μ s 0 + Δ μ s / 2 ) ) ,
r b r 1 ( 1 + x / r 1 2 ) , 1 r b 1 r 1 ( 1 x r 1 2 ) ,
G 1 ( τ ) = 3 4 π tr exp ( K ( τ ) r 1 ) r 1 [ 1 exp ( K ( τ ) x r 1 ) ( 1 x r 1 2 ) ] .
G 1 ( τ ) 3 4 π tr x exp ( K ( τ ) r 1 ) r 1 2 ( K ( τ ) + 1 r 1 ) .
g 1 ( τ ) = G 1 ( τ ) G 1 ( 0 ) exp ( γ F τ ) ( 1 + γ F τ r 1 K 0 + 1 ) exp ( γ F τ ) ,

Metrics