Abstract

There is considerable interest in the interrogation of biological tissue at terahertz (THz) frequencies, largely due to the contrast in the optical properties of different biological tissues which occur in this electro-magnetic radiation band. Of particular interest are THz biomedical images, which have the potential to highlight different information than those acquired in other frequency bands, thereby providing an augmented picture of biological structures. In this work, we demonstrate the feasibility of an interferometric biological imaging technique using a THz quantum cascade laser (QCL) operating at 2.59 THz to perform coherent imaging of porcine tissue samples. We show the potential of this new THz biomedical imaging technique for in vivo studies, by virtue of its reflection geometry and useful tissue penetration depth enabled by the large THz powers emitted by the quantum cascade laser used in this work. The observed clustering of interferometric tissue signatures opens a pathway towards automatic techniques for the discrimination of healthy tissue types for the study of normal physiology and possible therapeutic approaches.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement depth enhancement in terahertz imaging of biological tissues

Seung Jae Oh, Sang-Hoon Kim, Kiyoung Jeong, Yeonji Park, Yong-Min Huh, Joo-Hiuk Son, and Jin-Suck Suh
Opt. Express 21(18) 21299-21305 (2013)

Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

Lyubov V. Titova, Ayesheshim K. Ayesheshim, Andrey Golubov, Dawson Fogen, Rocio Rodriguez-Juarez, Frank A. Hegmann, and Olga Kovalchuk
Biomed. Opt. Express 4(4) 559-568 (2013)

Terahertz dynamic imaging of skin drug absorption

Kyung Won Kim, Kwang-Sung Kim, Hyeongmun Kim, Sang Hun Lee, Jae-Hak Park, Ju-Hee Han, Seung-Hyeok Seok, Jisuk Park, YoonSeok Choi, Young Il Kim, Joon Koo Han, and Joo-Hiuk Son
Opt. Express 20(9) 9476-9484 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [Crossref] [PubMed]
  2. S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101 (2001).
    [Crossref] [PubMed]
  3. A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
    [Crossref] [PubMed]
  4. S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
    [Crossref]
  5. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
    [Crossref] [PubMed]
  6. V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human basal cell carcinoma,” Appl. Spectrosc. 60, 1127–1133 (2006).
    [Crossref] [PubMed]
  7. C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
    [PubMed]
  8. C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
    [Crossref] [PubMed]
  9. J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys 124, 36101 (2006).
    [Crossref]
  10. E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595 (2004).
    [Crossref] [PubMed]
  11. E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39, R301 (2006).
    [Crossref]
  12. M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: Noise, errors, calibration,” IEEE Sens. J. 13, 8–17 (2013).
    [Crossref]
  13. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  14. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
    [Crossref]
  15. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a terahertz quantum cascade laser,” Opt. Express 12, 1879–1884 (2004).
    [Crossref] [PubMed]
  16. S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
    [Crossref]
  17. A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
    [Crossref]
  18. Z. Taylor, R. Singh, M. Culjat, J. Suen, W. Grundfest, H. Lee, and E. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett. 33, 1258–1260 (2008).
    [Crossref] [PubMed]
  19. A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43, 5637–5646 (2004).
    [Crossref] [PubMed]
  20. Y. Sun, B. M. Fischer, and E. Pickwell-MacPherson, “Effects of formalin fixing on the terahertz properties of biological tissues,” J. Biomed. Opt. 14, 064017 (2009).
    [Crossref]
  21. M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006).
    [Crossref]
  22. S. J. Oh, S.-H. Kim, K. Jeong, Y. Park, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Measurement depth enhancement in terahertz imaging of biological tissues,” Opt. Express 21, 21299–21305 (2013).
    [Crossref] [PubMed]
  23. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
    [Crossref] [PubMed]
  24. S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47, 1428–1433 (2011).
    [Crossref]
  25. D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
    [Crossref]

2014 (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

2013 (3)

2012 (2)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
[Crossref] [PubMed]

2011 (3)

S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47, 1428–1433 (2011).
[Crossref]

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
[Crossref] [PubMed]

2009 (2)

Y. Sun, B. M. Fischer, and E. Pickwell-MacPherson, “Effects of formalin fixing on the terahertz properties of biological tissues,” J. Biomed. Opt. 14, 064017 (2009).
[Crossref]

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

2008 (1)

2006 (5)

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human basal cell carcinoma,” Appl. Spectrosc. 60, 1127–1133 (2006).
[Crossref] [PubMed]

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39, R301 (2006).
[Crossref]

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006).
[Crossref]

J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys 124, 36101 (2006).
[Crossref]

2004 (3)

2003 (1)

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

2002 (2)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

2001 (1)

S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101 (2001).
[Crossref] [PubMed]

1995 (1)

Ahuja, A.

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

Allen, S. J.

J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys 124, 36101 (2006).
[Crossref]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

Azad, A. K.

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006).
[Crossref]

Beck, M.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Bennett, D. B.

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
[Crossref]

Berry, E.

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101 (2001).
[Crossref] [PubMed]

Bertling, K.

Brown, E.

Brown, E. R.

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
[Crossref]

Chamberlain, J.

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101 (2001).
[Crossref] [PubMed]

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Cole, B.

E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595 (2004).
[Crossref] [PubMed]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

Culjat, M.

Darmo, J.

Davies, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Davies, A. G.

Dean, P.

Debbage, P.

Dobroiu, A.

Donati, S.

S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47, 1428–1433 (2011).
[Crossref]

Faist, J.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a terahertz quantum cascade laser,” Opt. Express 12, 1879–1884 (2004).
[Crossref] [PubMed]

Fan, S.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Fasching, G.

Fischer, B. M.

Y. Sun, B. M. Fischer, and E. Pickwell-MacPherson, “Effects of formalin fixing on the terahertz properties of biological tissues,” J. Biomed. Opt. 14, 064017 (2009).
[Crossref]

Fitzgerald, A.

E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595 (2004).
[Crossref] [PubMed]

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101 (2001).
[Crossref] [PubMed]

Fitzgerald, A. J.

Flanagan, N.

Ford, J.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Giles, R. H.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
[Crossref] [PubMed]

Giovannini, M.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a terahertz quantum cascade laser,” Opt. Express 12, 1879–1884 (2004).
[Crossref] [PubMed]

Grundfest, W.

Grundfest, W. S.

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
[Crossref]

Ha, T.

Harris, G.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Harris, J. S.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Harrison, P.

Hatami, F.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

He, M.

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006).
[Crossref]

Homer-Vanniasinkam, S.

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

Hoyler, N.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Hu, B. B.

Huang, S.

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

Huh, Y.-M.

Ikonic, Z.

Indjin, D.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jeong, K.

Joseph, C. S.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
[Crossref] [PubMed]

Kawase, K.

Khanna, S. P.

Kim, S. M.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Kim, S.-H.

King, D.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Kliese, R.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kremser, C.

Kröll, J.

Kurian, A. W.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Lachab, M.

Lee, H.

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Li, W.

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
[Crossref]

Lim, Y. L.

Linfield, E.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Linfield, E. H.

Miles, R.

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

Morita, Y.

Naftaly, M.

M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: Noise, errors, calibration,” IEEE Sens. J. 13, 8–17 (2013).
[Crossref]

Neel, V. A.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
[Crossref] [PubMed]

Nikolic, M.

Nuss, M. C.

Oh, S. J.

Ohshima, Y. N.

Otani, C.

Park, Y.

Patel, R.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
[Crossref] [PubMed]

Pepper, M.

E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595 (2004).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

Pickwell, E.

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39, R301 (2006).
[Crossref]

V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human basal cell carcinoma,” Appl. Spectrosc. 60, 1127–1133 (2006).
[Crossref] [PubMed]

E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595 (2004).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

Y. Sun, B. M. Fischer, and E. Pickwell-MacPherson, “Effects of formalin fixing on the terahertz properties of biological tissues,” J. Biomed. Opt. 14, 064017 (2009).
[Crossref]

Plaxco, K. W.

J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys 124, 36101 (2006).
[Crossref]

Pye, R. J.

V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human basal cell carcinoma,” Appl. Spectrosc. 60, 1127–1133 (2006).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

Rakic, A. D.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Scalari, G.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Singh, R.

Smith, M.

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

Smye, S.

S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101 (2001).
[Crossref] [PubMed]

Son, J.-H.

Suen, J.

Suh, J.-S.

Sun, Y.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Y. Sun, B. M. Fischer, and E. Pickwell-MacPherson, “Effects of formalin fixing on the terahertz properties of biological tissues,” J. Biomed. Opt. 14, 064017 (2009).
[Crossref]

Taday, P. F.

Taimre, T.

Tamosiunas, V.

Taylor, Z.

Taylor, Z. D.

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Unterrainer, K.

Valavanis, A.

Wallace, V.

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39, R301 (2006).
[Crossref]

E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595 (2004).
[Crossref] [PubMed]

Wallace, V. P.

V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human basal cell carcinoma,” Appl. Spectrosc. 60, 1127–1133 (2006).
[Crossref] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

Wang, Y.

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

Wilson, S. J.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

Xu, J.

J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys 124, 36101 (2006).
[Crossref]

Yamashita, M.

Yaroslavsky, A. N.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
[Crossref] [PubMed]

Ye, S.

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006).
[Crossref]

Yeung, D.

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

Yu, C.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Zhang, W.

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006).
[Crossref]

Zhang, Y.

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

Zinov’ev, N.

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88, 153903 (2006).
[Crossref]

Appl. Spectrosc. (1)

Electron. Lett. (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. Davies, and E. Linfield, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50, 309–311 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47, 1428–1433 (2011).
[Crossref]

IEEE Sens. J. (1)

M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: Noise, errors, calibration,” IEEE Sens. J. 13, 8–17 (2013).
[Crossref]

IEEE Sensors J. (1)

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sensors J. 11, 1253–1262 (2011).
[Crossref]

J. Biol. Phys. (1)

A. Fitzgerald, E. Berry, N. Zinov’ev, S. Homer-Vanniasinkam, R. Miles, J. Chamberlain, and M. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29, 123–128 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. Sun, B. M. Fischer, and E. Pickwell-MacPherson, “Effects of formalin fixing on the terahertz properties of biological tissues,” J. Biomed. Opt. 14, 064017 (2009).
[Crossref]

J. Biophotonics (1)

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging,” J. Biophotonics 7, 295–303 (2012).
[Crossref] [PubMed]

J. Chem. Phys (1)

J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys 124, 36101 (2006).
[Crossref]

J. Phys. D: Appl. Phys. (1)

E. Pickwell and V. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39, R301 (2006).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Med. Biol. (4)

S. Huang, Y. Wang, D. Yeung, A. Ahuja, Y. Zhang, and E. Pickwell-MacPherson, “Tissue characterization using terahertz pulsed imaging in reflection geometry,” Phys. Med. Biol. 54, 149 (2009).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853 (2002).
[Crossref] [PubMed]

S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101 (2001).
[Crossref] [PubMed]

E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595 (2004).
[Crossref] [PubMed]

Quant. Imaging Med. Surg. (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-MacPherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the setup used for tissue samples measurements. The operating principles of the setup have been discussed in detail previously [17].

Fig. 2
Fig. 2

Visual images and descriptions of the mounted porcine tissue samples. (a) shows two pieces of fresh tissue from the abdomen of a pig placed in an internally threaded aluminium tube. The tissue sample above the aluminium separator was placed with its cross-section facing the TPX window; the tissue sample below the aluminium separator was placed en face with its skin surface facing the TPX window. (b) shows the thin slices of fresh porcine abdominal skin of different thicknesses (40 μm – 100 μm) placed behind the TPX window.

Fig. 3
Fig. 3

THz porcine tissue imaging using self-mixing interferometry [the sample was described in Fig. 2(a)]. (a) is the amplitude-like imaging modality based on a 101 × 101 array of self-mixing waveforms [Inset: high resolution image based on a 51 × 301 array], (b) is the phase-like imaging modality, (c)–(h) is the heat map of self-mixing waveforms for different tissue types associated with the color markers overlayed in (a). Specifically the tissue types are: (c) Aluminium separator; (d) Epidermis; (e) Upper dermis; (f) Lower dermis; (g) Sub-dermal fat; (h) muscle tissue; (i) presents the corresponding amplitude-like/phase-like plots of waveforms (c)–(h). The mark of each tissue type appear to form natural clusters.

Fig. 4
Fig. 4

(a) shows the visual image of the sample. The comparison area is highlighted (blue rectangle). (b) The amplitude-like THz derived image. (c) H&E en face section visible microscopic view of the sample tissue in Fig. 4. Blood vessels (i & iv), arteriole and venule pair (iii), and sebaceous gland (ii) correspond to distinct features seen in (b).

Fig. 5
Fig. 5

THz images for porcine tissue depth penetration experiments using self-mixing interferometry [the sample was described in Fig. 2(b)]. (a) is the amplitude like imaging modality, (b) is the phase like imaging modality. Areas within four coloured contours correspond to the four samples with thicknesses given in Fig. 2(b).

Metrics