Abstract

To rapidly derive a result for diffuse reflectance from a multilayered model that is equivalent to that of a Monte-Carlo simulation (MCS), we propose a combination of a layered white MCS and the adding-doubling method. For slabs with various scattering coefficients assuming a certain anisotropy factor and without absorption, we calculate the transition matrices for light flow with respect to the incident and exit angles. From this series of precalculated transition matrices, we can calculate the transition matrices for the multilayered model with the specific anisotropy factor. The relative errors of the results of this method compared to a conventional MCS were less than 1%. We successfully used this method to estimate the chromophore concentration from the reflectance spectrum of a numerical model of skin and in vivo human skin tissue.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modelling spatially-resolved diffuse reflectance spectra of a multi-layered skin model by artificial neural networks trained with Monte Carlo simulations

Sheng-Yang Tsui, Chiao-Yi Wang, Tsan-Hsueh Huang, and Kung-Bin Sung
Biomed. Opt. Express 9(4) 1531-1544 (2018)

Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media

Quan Liu and Nirmala Ramanujam
J. Opt. Soc. Am. A 24(4) 1011-1025 (2007)

Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain

George Alexandrakis, Thomas J. Farrell, and Michael S. Patterson
Appl. Opt. 39(13) 2235-2244 (2000)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  2. R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models,” Proc. SPIE 7175, 717518 (2009).
    [Crossref]
  3. M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36(1), 93–104 (1997).
    [Crossref] [PubMed]
  4. D. Yudovsky and A. J. Durkin, “Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling,” Appl. Opt. 50(21), 4237–4245 (2011).
    [Crossref] [PubMed]
  5. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
    [Crossref] [PubMed]
  6. A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
    [Crossref] [PubMed]
  7. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
    [Crossref] [PubMed]
  8. S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
    [Crossref]
  9. M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
    [Crossref] [PubMed]
  10. I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
    [Crossref] [PubMed]
  11. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37(31), 7392–7400 (1998).
    [Crossref] [PubMed]
  12. S. A. Prahl, “The Adding-Doubling Method,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer US, NY, 1995).
  13. S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
    [Crossref] [PubMed]
  14. S. A. Prahl, “Optical absorption of hemoglobin,” (1999) http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  15. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
    [Crossref] [PubMed]
  16. S. L. Jacques, “Skin optics summary,” (1998) http://omlc.ogi.edu/news/jan98/skinoptics.html .
  17. S. L. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration 2, R.R. Alfano and J.G. Fujimoto, ed. (Optical Society of America (OSA), Washington, DC, 1996), pp. 364–369.
  18. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  19. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  20. I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of Absorbing Components in a Local Layer Embedded in the Turbid Media on the Basis of Visible to Near-Infrared(VIS-NIR) Reflectance Spectra,” Opt. Rev. 10(5), 427–435 (2003).
    [Crossref]
  21. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
    [Crossref] [PubMed]
  22. K. Yoshida, I. Nishidate, N. Ojima, and K. Iwata, “Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject,” J. Biomed. Opt. 19(1), 016009 (2014).
    [Crossref] [PubMed]
  23. C. E. Thorn, H. Kyte, D. W. Slaff, and A. C. Shore, “An association between vasomotion and oxygen extraction,” Am. J. Physiol. Heart Circ. Physiol. 301(2), H442–H449 (2011).
    [Crossref] [PubMed]

2014 (1)

K. Yoshida, I. Nishidate, N. Ojima, and K. Iwata, “Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject,” J. Biomed. Opt. 19(1), 016009 (2014).
[Crossref] [PubMed]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (1)

S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
[Crossref]

2011 (4)

M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[Crossref] [PubMed]

D. Yudovsky and A. J. Durkin, “Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling,” Appl. Opt. 50(21), 4237–4245 (2011).
[Crossref] [PubMed]

C. E. Thorn, H. Kyte, D. W. Slaff, and A. C. Shore, “An association between vasomotion and oxygen extraction,” Am. J. Physiol. Heart Circ. Physiol. 301(2), H442–H449 (2011).
[Crossref] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

2009 (2)

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models,” Proc. SPIE 7175, 717518 (2009).
[Crossref]

2008 (1)

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

2004 (1)

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

2003 (1)

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of Absorbing Components in a Local Layer Embedded in the Turbid Media on the Basis of Visible to Near-Infrared(VIS-NIR) Reflectance Spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

1998 (2)

1997 (1)

1996 (1)

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref] [PubMed]

1995 (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1991 (1)

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

1989 (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Aizu, Y.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of Absorbing Components in a Local Layer Embedded in the Turbid Media on the Basis of Visible to Near-Infrared(VIS-NIR) Reflectance Spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

Alerstam, E.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

Alianelli, L.

Andersson-Engels, S.

Bargo, P.

Blumetti, C.

Contini, D.

Cuccia, D.

Durkin, A.

Durkin, A. J.

Foster, T. H.

Fujiwara, I.

S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
[Crossref]

Gardner, A.

Hayakawa, C.

Hull, E. L.

Ismaelli, A.

Iwata, K.

K. Yoshida, I. Nishidate, N. Ojima, and K. Iwata, “Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject,” J. Biomed. Opt. 19(1), 016009 (2014).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Kawase, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Kienle, A.

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref] [PubMed]

Kollias, N.

Kyte, H.

C. E. Thorn, H. Kyte, D. W. Slaff, and A. C. Shore, “An association between vasomotion and oxygen extraction,” Am. J. Physiol. Heart Circ. Physiol. 301(2), H442–H449 (2011).
[Crossref] [PubMed]

Maeda, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Martelli, F.

Martinelli, M.

McAuliffe, D. J.

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

Mishina, H.

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of Absorbing Components in a Local Layer Embedded in the Turbid Media on the Basis of Visible to Near-Infrared(VIS-NIR) Reflectance Spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

Mycek, M. A.

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models,” Proc. SPIE 7175, 717518 (2009).
[Crossref]

Nichols, M. G.

Niizeki, K.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Nishidate, I.

K. Yoshida, I. Nishidate, N. Ojima, and K. Iwata, “Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject,” J. Biomed. Opt. 19(1), 016009 (2014).
[Crossref] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of Absorbing Components in a Local Layer Embedded in the Turbid Media on the Basis of Visible to Near-Infrared(VIS-NIR) Reflectance Spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

Ogawa-Ochiai, K.

S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
[Crossref]

Ojima, N.

K. Yoshida, I. Nishidate, N. Ojima, and K. Iwata, “Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject,” J. Biomed. Opt. 19(1), 016009 (2014).
[Crossref] [PubMed]

Patterson, M. S.

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref] [PubMed]

Pifferi, A.

Sassaroli, A.

Shore, A. C.

C. E. Thorn, H. Kyte, D. W. Slaff, and A. C. Shore, “An association between vasomotion and oxygen extraction,” Am. J. Physiol. Heart Circ. Physiol. 301(2), H442–H449 (2011).
[Crossref] [PubMed]

Slaff, D. W.

C. E. Thorn, H. Kyte, D. W. Slaff, and A. C. Shore, “An association between vasomotion and oxygen extraction,” Am. J. Physiol. Heart Circ. Physiol. 301(2), H442–H449 (2011).
[Crossref] [PubMed]

Spanier, J.

Star, W. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Svensson, T.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

Tanaka, N.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Taroni, P.

Thorn, C. E.

C. E. Thorn, H. Kyte, D. W. Slaff, and A. C. Shore, “An association between vasomotion and oxygen extraction,” Am. J. Physiol. Heart Circ. Physiol. 301(2), H442–H449 (2011).
[Crossref] [PubMed]

Tseng, S. H.

Tsumura, N.

S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
[Crossref]

Valentini, G.

Van Gemert, M. J. C.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

Venugopalan, V.

Vishwanath, K.

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models,” Proc. SPIE 7175, 717518 (2009).
[Crossref]

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wilson, R. H.

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models,” Proc. SPIE 7175, 717518 (2009).
[Crossref]

Yamamoto, S.

S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
[Crossref]

Yamauchi, M.

S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
[Crossref]

Yoshida, K.

K. Yoshida, I. Nishidate, N. Ojima, and K. Iwata, “Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject,” J. Biomed. Opt. 19(1), 016009 (2014).
[Crossref] [PubMed]

Yuasa, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Yudovsky, D.

Zaccanti, G.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

C. E. Thorn, H. Kyte, D. W. Slaff, and A. C. Shore, “An association between vasomotion and oxygen extraction,” Am. J. Physiol. Heart Circ. Physiol. 301(2), H442–H449 (2011).
[Crossref] [PubMed]

Appl. Opt. (4)

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9(4), 700–710 (2004).
[Crossref] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

K. Yoshida, I. Nishidate, N. Ojima, and K. Iwata, “Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject,” J. Biomed. Opt. 19(1), 016009 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Rev. (2)

S. Yamamoto, I. Fujiwara, M. Yamauchi, N. Tsumura, and K. Ogawa-Ochiai, “Optical path-length matrix method for estimating skin spectrum,” Opt. Rev. 19(6), 361–365 (2012).
[Crossref]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of Absorbing Components in a Local Layer Embedded in the Turbid Media on the Basis of Visible to Near-Infrared(VIS-NIR) Reflectance Spectra,” Opt. Rev. 10(5), 427–435 (2003).
[Crossref]

Photochem. Photobiol. (1)

S. L. Jacques and D. J. McAuliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochem. Photobiol. 53(6), 769–775 (1991).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref] [PubMed]

Proc. SPIE (1)

R. H. Wilson, K. Vishwanath, and M. A. Mycek, “Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models,” Proc. SPIE 7175, 717518 (2009).
[Crossref]

Other (4)

S. L. Jacques, “Skin optics summary,” (1998) http://omlc.ogi.edu/news/jan98/skinoptics.html .

S. L. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration 2, R.R. Alfano and J.G. Fujimoto, ed. (Optical Society of America (OSA), Washington, DC, 1996), pp. 364–369.

S. A. Prahl, “Optical absorption of hemoglobin,” (1999) http://omlc.ogi.edu/spectra/hemoglobin/index.html .

S. A. Prahl, “The Adding-Doubling Method,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer US, NY, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Range of direction of incident angle Θi and exit angle Θj. Here, Θi and Θj indicate the direction between the two respective cones of θi-1 and θi, and of θj-1 and θj, respectively.
Fig. 2
Fig. 2 Conceptual diagram of the layered white Monte Carlo simulation (LWMCS).
Fig. 3
Fig. 3 Schematic of similarity. The left and right images are homothetic, and the scale factor is α. Homothetic trajectories have the same probability.
Fig. 4
Fig. 4 Notation of (R), (T), and the light flow L. (a) Notation for a layer between boundaries k and k + 1. (b) Notation for a composition of layers between boundaries k to l.
Fig. 5
Fig. 5 Schematic of binning.
Fig. 6
Fig. 6 Experimental setup for measuring diffuse reflectance spectra for in vivo human skin.
Fig. 7
Fig. 7 E of (a)-(d): cMCS; (e)-(h): sLWMCS; (i)-(l): gLWMCS. For each row, from left to light, μs cm−1 varies as the values indicated on top of the picture, which are the values at 400, 500, 600, and 700 nm in our skin model. Horizontal and vertical axes are μa cm−1for the dermis and epidermis, respectively, and the specific values of each axes are shown at the bottom left. The correlation between E and the color is shown as a color bar at the bottom right.
Fig. 8
Fig. 8 (a) Simulated reflectance spectra obtained from cMCS, sLWMCS, and gLWMCS for the skin models representing the conditions of normal, occluded, and post-occlusion reactive hyperemia. cMCS for normal, red dotted line; cMCS for occlusion, blue dotted line; cMCS for post-occlusion reactive hyperemia, green dotted line; sLWMCS for normal, red open circle; sLWMCS for occlusion, blue open circle; sLWMCS for post-occlusion reactive hyperemia, green open circle; gLWMCS for normal, red cross; gLWMCS for occlusion, blue cross; gLWMCS for post-occlusion reactive hyperemia, green cross. (b) Difference between cMCS and sLWMCS for normal (red dotted line), occluded (blue dotted line), and post-occlusion reactive hyperemia (green dotted line). Difference between cMCS and gLWMCS for normal (red solid line), occluded (blue solid line), and post-occlusion reactive hyperemia (green solid line).
Fig. 9
Fig. 9 (a) Comparison between the typical measured reflectance spectra obtained from the actual human skin (dotted lines) and the reconstructed reflectance spectra from the chromophore concentrations estimated by the optimization method with the gLWMCS (solid lines) for normal (0s, red), occlusion (300s, blue), and post-occlusion reactive hyperemia (500s, green). The cross signs were plotted at the wavelength used in the estimation of chromophore concentrations. (b) Time courses of Cm (gray line), Coh (red dotted line), Cdh (red broken line), Cth (red solid line), and StO2 (blue line) during normal, cuff occlusion at 250 mm Hg, and post-occlusion.

Tables (6)

Tables Icon

Table 1 The skin model.

Tables Icon

Table 2 The parameters for MCS in phase 1 of sLWMCS.

Tables Icon

Table 3 The parameters for binning of path length.

Tables Icon

Table 4 The parameters for MCS in phase 1 of gLWMCS.

Tables Icon

Table 5 The average and standard deviation of E ( × 10−3) for each method at each wavelength.

Tables Icon

Table 6 The results of estimating the chromophore concentration.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

R=( R( Θ 1 Θ 1 ) R( Θ n Θ 1 ) R( Θ 1 Θ n ) R( Θ n Θ n ) ),
T=( T( Θ 1 Θ 1 ) T( Θ n Θ 1 ) T( Θ 1 Θ n ) T( Θ n Θ n ) ).
R( Θ i Θ j )= θ j1 θ j r( Θ i θ )dθ ,
T( Θ i Θ j )= θ j1 θ j t( Θ i θ )dθ .
R W,ξ ( Θ i )=( R W,ξ ( Θ i Θ 1 , Ζ 1 ) R W,ξ ( Θ i Θ 1 , Ζ m ) R W,ξ ( Θ i Θ n , Ζ 1 ) R W,ξ ( Θ i Θ n , Ζ m ) ),
T W,ξ ( Θ i )=( T W,ξ ( Θ i Θ 1 , Ζ 1 ) T W,ξ ( Θ i Θ 1 , Ζ m ) T W,ξ ( Θ i Θ n , Ζ 1 ) T W,ξ ( Θ i Θ n , Ζ m ) ).
R μ a d,ξ ( Θ i )=( R μ a d,ξ ( Θ i Θ 1 ) R μ a d,ξ ( Θ i Θ n ) )= R W,ξ ( Θ i ) A ( μ a d ) =( R W,ξ ( Θ 1 Θ 1 , Ζ 1 ) R W,ξ ( Θ n Θ 1 , Ζ m ) R W,ξ ( Θ 1 Θ n , Ζ 1 ) R W,ξ ( Θ n Θ n , Ζ m ) )( e μ a d Ζ 1 e μ a d Ζ m ),
T μ a d,ξ ( Θ i )=( T μ a d,ξ ( Θ i Θ 1 ) T μ a d,ξ ( Θ i Θ n ) )= T W,ξ ( Θ i ) A ( μ a d ) =( T W,ξ ( Θ 1 Θ 1 , Ζ 1 ) T W,ξ ( Θ n Θ 1 , Ζ m ) T W,ξ ( Θ 1 Θ n , Ζ 1 ) T W,ξ ( Θ n Θ n , Ζ m ) )( e μ a d Ζ 1 e μ a d Ζ m ).
R μ a d,ξ =( R μ a d,ξ ( Θ 1 ) R μ a d,ξ ( Θ n ) )=( R μ a d,ξ ( Θ 1 Θ 1 ) R μ a d,ξ ( Θ n Θ 1 ) R μ a d,ξ ( Θ 1 Θ n ) R μ a d,ξ ( Θ n Θ n ) ),
T μ a d,ξ =( T μ a d,ξ ( Θ 1 ) T μ a d,ξ ( Θ n ) )=( T μ a d,ξ ( Θ 1 Θ 1 ) T μ a d,ξ ( Θ n Θ 1 ) T μ a d,ξ ( Θ 1 Θ n ) T μ a d,ξ ( Θ n Θ n ) ).
R μ a d,ξ = Ξ + ξ Ξ + Ξ R μ a d,Ξ + ξ Ξ Ξ + Ξ R μ a d,Ξ+ ,
T μ a d,ξ = Ξ + ξ Ξ + Ξ T μ a d,Ξ + ξ Ξ Ξ + Ξ T μ a d,Ξ+ ,
R k:k+1 =( R k:k+1 ( Θ 1 Θ 1 ) R k:k+1 ( Θ n Θ 1 ) R k:k+1 ( Θ 1 Θ n ) R k:k+1 ( Θ n Θ n ) ),
T k:k+1 =( T k:k+1 ( Θ 1 Θ 1 ) T k:k+1 ( Θ n Θ 1 ) T k:k+1 ( Θ 1 Θ n ) T k:k+1 ( Θ n Θ n ) ).
R k:k+1 ( Θ i Θ j )= θ j1 θ j r k:k+1 ( Θ i θ )dθ ,
T k:k+1 ( Θ i Θ j )= θ j1 θ j t k:k+1 ( Θ i θ )dθ ,
R k:k+1 ( Θ i Θ j ) = δ i,j ( sin( Θ i Β i ) / sin( Θ i + Β i ) ) 2 + ( tan( Θ i Β i ) / tan( Θ i + Β i ) ) 2 2 .
j=1 n T k:k+1 ( Θ i Θ j ) =1 R k:k+1 ( Θ i Θ i ).
L 2, = T 1:2 L 1, + R 1:2 L 2, ,
L 1, = T 2:1 L 2, + R 1:2 L 1, .
R 1:3 = T 2:1 ( E R 2:3 R 2:1 ) 1 R 2:3 T 1:2 + R 1:2 ,
T 1:3 = T 2:3 ( E R 2:1 R 2:3 ) 1 T 1:2 ,
E= [ reflectance from a method evaluated ][ reflectance from cMCS ] [ reflectance from cMCS ] .
F= λ=400nm 700nm ( S( λ )S( c m , c oh , c dh ;λ ) ) 2 .

Metrics