Abstract

In combined clinical optoacoustic (OA) and ultrasound (US) imaging, epi-mode irradiation and detection integrated into one single probe offers flexible imaging of the human body. The imaging depth in epi-illumination is, however, strongly affected by clutter. As shown in previous phantom experiments, the location of irradiation plays an important role in clutter generation. We investigated the influence of the irradiation geometry on the local image contrast of clinical images, by varying the separation distance between the irradiated area and the acoustic imaging plane of a linear ultrasound transducer in an automated scanning setup. The results for different volunteers show that the image contrast can be enhanced on average by 25% and locally by more than a factor of two, when the irradiated area is slightly separated from the probe. Our findings have an important impact on the design of future optoacoustic probes for clinical application.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion)

Mithun Kuniyil Ajith Singh, Michael Jaeger, Martin Frenz, and Wiendelt Steenbergen
Biomed. Opt. Express 7(8) 2955-2972 (2016)

Non-invasive carotid imaging using optoacoustic tomography

Alexander Dima and Vasilis Ntziachristos
Opt. Express 20(22) 25044-25057 (2012)

Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach

Mithun Kuniyil Ajith Singh, Michael Jaeger, Martin Frenz, and Wiendelt Steenbergen
Biomed. Opt. Express 8(4) 2245-2260 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  3. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
    [Crossref] [PubMed]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  5. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
    [Crossref] [PubMed]
  6. J. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
    [Crossref] [PubMed]
  7. J. J. Niederhauser, M. Jaeger, and M. Frenz, “Comparison of laser-induced and classical ultrasound,” Proc. SPIE 4960, 118–123 (2003).
    [Crossref]
  8. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
    [Crossref] [PubMed]
  9. R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
    [Crossref] [PubMed]
  10. A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
    [Crossref] [PubMed]
  11. M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
    [Crossref] [PubMed]
  12. J. C. Bamber, “Acoustical Characteristics of Biological Media,” in Encyclopedia of Acoustics (John Wiley & Sons, Inc., 2007), pp. 1703–1726.
  13. M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
    [Crossref] [PubMed]
  14. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
    [Crossref] [PubMed]
  15. M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
    [Crossref]
  16. M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
    [Crossref] [PubMed]
  17. M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
    [Crossref]
  18. M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
    [Crossref] [PubMed]
  19. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
    [Crossref] [PubMed]
  20. L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
    [Crossref] [PubMed]
  21. Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt. 48(17), 3204–3211 (2009).
    [Crossref] [PubMed]
  22. L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
    [Crossref] [PubMed]
  23. J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
    [Crossref] [PubMed]
  24. L. G. Montilla, R. Olafsson, and R. S. Witte, “Real-time pulse echo and photoacoustic imaging using an ultrasound array and in-line reflective illumination,” Proc. SPIE 7564, 75643C (2010).
    [Crossref]
  25. L. G. Montilla, R. Olafsson, and R. S. Witte, “In vivo photoacoustic and pulse echo imaging of a pancreatic tumor using a hand held device,” in Proceedings of IEEE Ultrasonics Symposium, (IEEE, 2010), pp. 2147–2150.
    [Crossref]
  26. J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
    [Crossref]
  27. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
    [Crossref]
  28. L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
    [Crossref] [PubMed]
  29. H. G. Akarçay, M. Frenz, and J. Ricka, Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 2012 Bern, Switzerland, are preparing a manuscript to be called ” jaMCp3: Towards the realistic modeling of light propagation in biological tissues”
  30. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  31. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissue: A review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
    [Crossref]
  32. E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
    [Crossref]
  33. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Appl. Phys. (Berl.) 38, 2543 (2005).
  34. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
    [Crossref] [PubMed]
  35. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
    [Crossref] [PubMed]
  36. A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34(21), 4609–4619 (1995).
    [Crossref] [PubMed]

2013 (3)

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref]

2012 (3)

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
[Crossref] [PubMed]

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

2011 (3)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissue: A review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

2010 (3)

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[Crossref] [PubMed]

L. G. Montilla, R. Olafsson, and R. S. Witte, “Real-time pulse echo and photoacoustic imaging using an ultrasound array and in-line reflective illumination,” Proc. SPIE 7564, 75643C (2010).
[Crossref]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

2009 (3)

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt. 48(17), 3204–3211 (2009).
[Crossref] [PubMed]

2008 (3)

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[Crossref] [PubMed]

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref] [PubMed]

2007 (3)

J. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[Crossref] [PubMed]

2006 (4)

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2005 (4)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Appl. Phys. (Berl.) 38, 2543 (2005).

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

2003 (1)

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Comparison of laser-induced and classical ultrasound,” Proc. SPIE 4960, 118–123 (2003).
[Crossref]

2001 (1)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

1996 (1)

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

1995 (1)

Aguirre, A.

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

Andersson-Engels, S.

Bamber, J.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Bamber, J. C.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissue: A review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Appl. Phys. (Berl.) 38, 2543 (2005).

Bauer, D. R.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Beard, P. C.

J. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Berg, R.

Bitton, R.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[Crossref] [PubMed]

Brands, P. J.

R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref] [PubMed]

Brecht, H. P.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

Brewer, M.

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

Chan, E. K.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Chen, J.

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

Cheng, J. C.

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

Cheng, X.

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

Conjusteau, A.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Ding, H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Ermilov, S. A.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

Ferrara, D.

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

Frenz, M.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref]

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Comparison of laser-induced and classical ultrasound,” Proc. SPIE 4960, 118–123 (2003).
[Crossref]

Fronheiser, M. P.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

Gamelin, J.

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

Garcia-Uribe, A.

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissue: A review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Appl. Phys. (Berl.) 38, 2543 (2005).

Gertsch, A.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Guo, P.

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

Harris-Birtill, D.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Hejazi, M.

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
[Crossref]

Hu, S.

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[Crossref] [PubMed]

Hu, X. H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jaeger, M.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Comparison of laser-induced and classical ultrasound,” Proc. SPIE 4960, 118–123 (2003).
[Crossref]

Karabutov, A. A.

Keppner, H.

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
[Crossref]

Khokhlova, T. D.

Kitz, M.

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Appl. Phys. (Berl.) 38, 2543 (2005).

Kolkman, R. G. M.

R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref] [PubMed]

Kozhushko, V. V.

Kragel, P. J.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Ku, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Li, P. C.

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

Lu, J. Q.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Maslov, K.

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
[Crossref] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

Mehta, K.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

Montilla, L. G.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

L. G. Montilla, R. Olafsson, and R. S. Witte, “Real-time pulse echo and photoacoustic imaging using an ultrasound array and in-line reflective illumination,” Proc. SPIE 7564, 75643C (2010).
[Crossref]

L. G. Montilla, R. Olafsson, and R. S. Witte, “In vivo photoacoustic and pulse echo imaging of a pancreatic tumor using a hand held device,” in Proceedings of IEEE Ultrasonics Symposium, (IEEE, 2010), pp. 2147–2150.
[Crossref]

Motamedi, M.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Comparison of laser-induced and classical ultrasound,” Proc. SPIE 4960, 118–123 (2003).
[Crossref]

Nilsson, A. M. K.

O’Flynn, E.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

O’Neil, M.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Olafsson, R.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

L. G. Montilla, R. Olafsson, and R. S. Witte, “Real-time pulse echo and photoacoustic imaging using an ultrasound array and in-line reflective illumination,” Proc. SPIE 7564, 75643C (2010).
[Crossref]

L. G. Montilla, R. Olafsson, and R. S. Witte, “In vivo photoacoustic and pulse echo imaging of a pancreatic tumor using a hand held device,” in Proceedings of IEEE Ultrasonics Symposium, (IEEE, 2010), pp. 2147–2150.
[Crossref]

Oraevsky, A. A.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

Pelivanov, I. M.

Preisser, S.

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

Protsenko, D.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Sanders, M. M.

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

Schüpbach, S.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Schweizer, D.

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

Senegas, S.

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

Shung, K. K.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[Crossref] [PubMed]

Siegenthaler, L.

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

Solomatin, V. S.

Song, L.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[Crossref] [PubMed]

Sorg, B.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Steenbergen, W.

R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

Su, R.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissue: A review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Appl. Phys. (Berl.) 38, 2543 (2005).

van Leeuwen, T. G.

R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref] [PubMed]

Wang, L.

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
[Crossref] [PubMed]

Wang, L. V.

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
[Crossref] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[Crossref] [PubMed]

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt. 48(17), 3204–3211 (2009).
[Crossref] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005).
[Crossref] [PubMed]

Wang, M.

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

Wang, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

Wang, Y. H.

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Welch, A. J.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Witte, R. S.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

L. G. Montilla, R. Olafsson, and R. S. Witte, “Real-time pulse echo and photoacoustic imaging using an ultrasound array and in-line reflective illumination,” Proc. SPIE 7564, 75643C (2010).
[Crossref]

L. G. Montilla, R. Olafsson, and R. S. Witte, “In vivo photoacoustic and pulse echo imaging of a pancreatic tumor using a hand held device,” in Proceedings of IEEE Ultrasonics Symposium, (IEEE, 2010), pp. 2147–2150.
[Crossref]

Wooden, W. A.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Xie, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

Xie, Z.

Xing, W.

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Yan, S.

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

Zhang, H. F.

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt. 48(17), 3204–3211 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zharinov, A. N.

Zhu, Q.

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. (Berl.) (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” Appl. Phys. (Berl.) 38, 2543 (2005).

IEEE J. Sel. Top. Quantum Electron. (1)

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Chen, M. Wang, J. C. Cheng, Y. H. Wang, P. C. Li, and X. Cheng, “A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 766–775 (2012).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Inverse Probl. (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k -space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. Biomed. Opt. (10)

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012).
[Crossref] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[Crossref] [PubMed]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt. 15(2), 021305 (2010).
[Crossref] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

R. G. M. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref] [PubMed]

A. Aguirre, P. Guo, J. Gamelin, S. Yan, M. M. Sanders, M. Brewer, and Q. Zhu, “Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization,” J. Biomed. Opt. 14(5), 054014 (2009).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13(5), 054028 (2008).
[Crossref] [PubMed]

J. Innovative Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissue: A review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, “Transparent ITO coated PVDF transducer for optoacoustic depth profiling,” Opt. Commun. 253(4-6), 401–406 (2005).
[Crossref]

Opt. Lett. (1)

Photoacoustics (1)

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref]

Phys. Med. Biol. (5)

M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[Crossref] [PubMed]

Proc. SPIE (3)

J. J. Niederhauser, M. Jaeger, and M. Frenz, “Comparison of laser-induced and classical ultrasound,” Proc. SPIE 4960, 118–123 (2003).
[Crossref]

L. G. Montilla, R. Olafsson, and R. S. Witte, “Real-time pulse echo and photoacoustic imaging using an ultrasound array and in-line reflective illumination,” Proc. SPIE 7564, 75643C (2010).
[Crossref]

M. Frenz and M. Jaeger, “Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments,” Proc. SPIE 6856, 68561Y (2008).
[Crossref]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Other (3)

J. C. Bamber, “Acoustical Characteristics of Biological Media,” in Encyclopedia of Acoustics (John Wiley & Sons, Inc., 2007), pp. 1703–1726.

L. G. Montilla, R. Olafsson, and R. S. Witte, “In vivo photoacoustic and pulse echo imaging of a pancreatic tumor using a hand held device,” in Proceedings of IEEE Ultrasonics Symposium, (IEEE, 2010), pp. 2147–2150.
[Crossref]

H. G. Akarçay, M. Frenz, and J. Ricka, Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 2012 Bern, Switzerland, are preparing a manuscript to be called ” jaMCp3: Towards the realistic modeling of light propagation in biological tissues”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Automated scanning setup for US and OA imaging, (b) Scan region with anatomical map of forearm vasculature. Anatomical structures are shown: radial artery (ar), the median nerve (nm) and the radial veins (vr). Position 1 and 2 marks the position the images of Fig. 2(a) and 2(b), respectively were taken.

Fig. 2
Fig. 2

(a) Transversal OA image at the position 1 indicated in Fig. 1(b). (b) Transversal OA image at position 2. (c) Superposition of OA (in color) and B-mode US at position 1.

Fig. 3
Fig. 3

OA transversal images indicating the influence of different irradiation distances on the image contrast at two different forearm positions, (a)-(c) and (d)-(f), of the same volunteer. The distance between the two positions was 3 cm; the solid arrows indicate the upper and lower wall of the radial artery; the dashed arrow indicates the median artery.

Fig. 4
Fig. 4

Maximum intensity projection in x-direction of OA images of two different volunteers, (a)-(c) and (d)-(f), respectively, at irradiation distances of 11 mm, 15 mm, and 19 mm; the solid arrows indicate the lower vessel wall of the radial artery; the dashed arrows show the outlines of the median artery;

Fig. 5
Fig. 5

Example of the definition of the ROI for contrast analysis around the lower vessel wall of the radial artery.

Fig. 6
Fig. 6

Signal and background analysis of the ROI around the lower vessel wall (indicated in Fig. 5) as a function of the imaging position y for different illumination distances for the same volunteer as shown in Fig. 4(a)-4(c); points correspond to measured data; blue solid lines indicate the moving-average of the signal level (lower vessel wall). The red dashed lines describe the moving average of the background level and the black dashed lines represent the noise level.

Fig. 7
Fig. 7

Local signal-to-background ratio [dB] inside the ROI (indicated in Fig. 5) as function of imaging position y, for two different volunteers, (a) and (b), (same volunteers as shown in Fig. 4(a)-4(c) and 4(d)-4(f)) and three irradiation distances (11 mm = blue, 15 mm = red and 19 mm = black). The scattered points correspond to raw data; lines show the moving average of the raw data. The horizontal lines indicate the average signal-to-background ratio over the entire scanning region.

Fig. 8
Fig. 8

Maximum intensity projection in x-direction of OA images for different irradiation distances varying from 11mm to 21mm with a step size of 2mm. The solid arrows indicate the lower vessel wall of the radial artery and the dashed arrow points at the median artery.

Fig. 9
Fig. 9

Bar plot showing the average and the standard deviation of the contrast of the lower radial artery wall (indicated by solid arrows in Fig. 8) for various irradiation distances. All values are expressed relative to the closest irradiation distance of 11mm.

Fig. 10
Fig. 10

Maximum intensity projection in x-direction of OA images for different irradiation distances varying from 0mm to 18mm; for an irradiation below the transducer aperture a transparent water bag was used as spacer, leading to a spacing of around 10mm between skin surface and transducer aperture; the dashed line in (a) indicates the skin surface; the solid arrow shows the upper vessel wall of the radial artery at a depth of 7-8mm inside the tissue.

Fig. 11
Fig. 11

Bar plot showing the average and the standard deviation of the contrast of the upper radial artery wall (indicated by a solid arrow in Fig. 10) for various irradiation distances. All values are expressed relative to the reference irradiation distance of 0mm (irradiation below transducer).

Fig. 12
Fig. 12

Monte Carlo simulation results for three different illumination angles. The optical properties chosen for the two layered forearm model are: n = 1.32, μa = 0.02 mm−1, μs’ = 1.0 mm−1, g = 0.9 for skin and n = 1.32, μa = 0.05 mm−1, μs’ = 0.45 mm−1, g = 0.93 for muscle tissue. The inclination of the light source becomes irrelevant after 7-8 millimeters, where the diffusion regime is reached.

Tables (1)

Tables Icon

Table 1 Values are indicating the overall averaged local contrast [%] at an intermediate illumination distance relative to the closest irradiation distance (left) and relative to the distant irradiation (right); data of all four different volunteers.

Metrics