Abstract

Oxygen plays an important role in wound healing, as it is essential to biological functions such as cell proliferation, immune responses and collagen synthesis. Poor oxygenation is directly associated with the development of chronic ischemic wounds, which affect more than 6 million people each year in the United States alone at an estimated cost of $25 billion. Knowledge of oxygenation status is also important in the management of burns and skin grafts, as well as in a wide range of skin conditions. Despite the importance of the clinical determination of tissue oxygenation, there is a lack of rapid, user-friendly and quantitative diagnostic tools that allow for non-disruptive, continuous monitoring of oxygen content across large areas of skin and wounds to guide care and therapeutic decisions. In this work, we describe a sensitive, colorimetric, oxygen-sensing paint-on bandage for two-dimensional mapping of tissue oxygenation in skin, burns, and skin grafts. By embedding both an oxygen-sensing porphyrin-dendrimer phosphor and a reference dye in a liquid bandage matrix, we have created a liquid bandage that can be painted onto the skin surface and dries into a thin film that adheres tightly to the skin or wound topology. When captured by a camera-based imaging device, the oxygen-dependent phosphorescence emission of the bandage can be used to quantify and map both the pO2 and oxygen consumption of the underlying tissue. In this proof-of-principle study, we first demonstrate our system on a rat ischemic limb model to show its capabilities in sensing tissue ischemia. It is then tested on both ex vivo and in vivo porcine burn models to monitor the progression of burn injuries. Lastly, the bandage is applied to an in vivo porcine graft model for monitoring the integration of full- and partial-thickness skin grafts.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen. 17(1), 1–18 (2009).
    [Crossref] [PubMed]
  2. A. Bishop, “Role of oxygen in wound healing,” J. Wound Care 17(9), 399–402 (2008).
    [Crossref] [PubMed]
  3. C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
    [Crossref] [PubMed]
  4. M. Reddy, D. Keast, E. Fowler, and R. G. Sibbald, “Pain in pressure ulcers,” Ostomy Wound Manage. 49(4Suppl), 30–35 (2003).
    [PubMed]
  5. F. Gottrup, “Oxygen in wound healing and infection,” World J. Surg. 28(3), 312–315 (2004).
    [Crossref] [PubMed]
  6. S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
    [Crossref] [PubMed]
  7. J. L. Burns, J. S. Mancoll, and L. G. Phillips, “Impairments to wound healing,” Clin. Plast. Surg. 30(1), 47–56 (2003).
    [Crossref] [PubMed]
  8. D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
    [Crossref] [PubMed]
  9. S. T. Lee and A. M. Scott, “Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole,” Semin. Nucl. Med. 37(6), 451–461 (2007).
    [Crossref] [PubMed]
  10. G. H. Takahashi, I. Fatt, and T. K. Goldstick, “Oxygen consumption rate of tissue measured by a micropolarographic method,” J. Gen. Physiol. 50(2), 317–335 (1966).
    [Crossref] [PubMed]
  11. C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
    [Crossref] [PubMed]
  12. H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
    [Crossref] [PubMed]
  13. K. M. Baldwin, “Transcutaneous oximetry and skin surface temperature as objective measures of pressure ulcer risk,” Adv. Skin Wound Care 14(1), 26–31 (2001).
    [Crossref] [PubMed]
  14. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262(12), 5476–5482 (1987).
    [PubMed]
  15. Y. Amao, “Probes and Polymers for Optical Sensing of Oxygen,” Mikrochim. Acta 143(1), 1–12 (2003).
    [Crossref]
  16. S. M. Borisov, G. Zenkl, and I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
    [Crossref] [PubMed]
  17. C. S. Chu, Y. L. Lo, and T. W. Sung, “Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix,” Talanta 82(3), 1044–1051 (2010).
    [Crossref] [PubMed]
  18. M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
    [Crossref] [PubMed]
  19. C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
    [Crossref] [PubMed]
  20. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
    [Crossref] [PubMed]
  21. F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
    [Crossref] [PubMed]
  22. A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
    [Crossref] [PubMed]
  23. X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
    [Crossref] [PubMed]
  24. S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
    [Crossref] [PubMed]
  25. A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
    [Crossref] [PubMed]
  26. J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
    [Crossref]
  27. J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).
    [Crossref] [PubMed]
  28. N. J. Turro, Modern Molecular Photochemistry (University Science Books, Sausalito, CA, 1991).
  29. X. D. Wang, R. J. Meier, M. Link, and O. S. Wolfbeis, “Photographing oxygen distribution,” Angew. Chem. Int. Ed. Engl. 49(29), 4907–4909 (2010).
    [Crossref] [PubMed]
  30. S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, “Tomographic imaging of oxygen by phosphorescence lifetime,” Appl. Opt. 45(33), 8547–8559 (2006).
    [Crossref] [PubMed]
  31. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 147–152 (2002).
    [Crossref] [PubMed]
  32. T. J. Kelechi and D. E. Neal, “Skin perfusion pressure in chronic venous disorders,” Adv. Skin Wound Care 21(12), 576–581 (2008).
    [Crossref] [PubMed]
  33. E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
    [Crossref] [PubMed]
  34. C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
    [Crossref] [PubMed]
  35. G. S. E. Dowd, K. Linge, and G. Bentley, “Measurement of transcutaneous oxygen pressure in normal and ischemic skin,” J. Bone Joint Surg. 65(1), 79–83 (1983).
  36. J. Barret-Nerin and D. N. Herndon, Principles and Practice of Burn Surgery (New York: Marcel Dekker, 2004).
  37. A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
    [Crossref] [PubMed]
  38. A. Coruh and Y. Yontar, “Application of split-thickness dermal grafts in deep partial- and full-thickness burns: a new source of auto-skin grafting,” J. Burn Care Res. 33(3), e94–e100 (2012).
    [Crossref] [PubMed]
  39. J. W. Alexander, B. G. MacMillan, E. Law, and D. S. Kittur, “Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay,” J. Trauma 21(6), 433–438 (1981).
    [PubMed]

2014 (2)

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

2013 (1)

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

2012 (1)

A. Coruh and Y. Yontar, “Application of split-thickness dermal grafts in deep partial- and full-thickness burns: a new source of auto-skin grafting,” J. Burn Care Res. 33(3), e94–e100 (2012).
[Crossref] [PubMed]

2011 (2)

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

2010 (8)

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
[Crossref] [PubMed]

S. M. Borisov, G. Zenkl, and I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[Crossref] [PubMed]

C. S. Chu, Y. L. Lo, and T. W. Sung, “Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix,” Talanta 82(3), 1044–1051 (2010).
[Crossref] [PubMed]

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

X. D. Wang, R. J. Meier, M. Link, and O. S. Wolfbeis, “Photographing oxygen distribution,” Angew. Chem. Int. Ed. Engl. 49(29), 4907–4909 (2010).
[Crossref] [PubMed]

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

2009 (4)

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen. 17(1), 1–18 (2009).
[Crossref] [PubMed]

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

2008 (3)

A. Bishop, “Role of oxygen in wound healing,” J. Wound Care 17(9), 399–402 (2008).
[Crossref] [PubMed]

J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).
[Crossref] [PubMed]

T. J. Kelechi and D. E. Neal, “Skin perfusion pressure in chronic venous disorders,” Adv. Skin Wound Care 21(12), 576–581 (2008).
[Crossref] [PubMed]

2007 (1)

S. T. Lee and A. M. Scott, “Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole,” Semin. Nucl. Med. 37(6), 451–461 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (2)

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

F. Gottrup, “Oxygen in wound healing and infection,” World J. Surg. 28(3), 312–315 (2004).
[Crossref] [PubMed]

2003 (3)

Y. Amao, “Probes and Polymers for Optical Sensing of Oxygen,” Mikrochim. Acta 143(1), 1–12 (2003).
[Crossref]

J. L. Burns, J. S. Mancoll, and L. G. Phillips, “Impairments to wound healing,” Clin. Plast. Surg. 30(1), 47–56 (2003).
[Crossref] [PubMed]

M. Reddy, D. Keast, E. Fowler, and R. G. Sibbald, “Pain in pressure ulcers,” Ostomy Wound Manage. 49(4Suppl), 30–35 (2003).
[PubMed]

2002 (2)

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[Crossref] [PubMed]

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 147–152 (2002).
[Crossref] [PubMed]

2001 (1)

K. M. Baldwin, “Transcutaneous oximetry and skin surface temperature as objective measures of pressure ulcer risk,” Adv. Skin Wound Care 14(1), 26–31 (2001).
[Crossref] [PubMed]

1995 (1)

C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
[Crossref] [PubMed]

1987 (1)

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262(12), 5476–5482 (1987).
[PubMed]

1986 (1)

H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
[Crossref] [PubMed]

1983 (1)

G. S. E. Dowd, K. Linge, and G. Bentley, “Measurement of transcutaneous oxygen pressure in normal and ischemic skin,” J. Bone Joint Surg. 65(1), 79–83 (1983).

1981 (1)

J. W. Alexander, B. G. MacMillan, E. Law, and D. S. Kittur, “Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay,” J. Trauma 21(6), 433–438 (1981).
[PubMed]

1966 (1)

G. H. Takahashi, I. Fatt, and T. K. Goldstick, “Oxygen consumption rate of tissue measured by a micropolarographic method,” J. Gen. Physiol. 50(2), 317–335 (1966).
[Crossref] [PubMed]

Alexander, J. W.

J. W. Alexander, B. G. MacMillan, E. Law, and D. S. Kittur, “Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay,” J. Trauma 21(6), 433–438 (1981).
[PubMed]

Alhava, E.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Amao, Y.

Y. Amao, “Probes and Polymers for Optical Sensing of Oxygen,” Mikrochim. Acta 143(1), 1–12 (2003).
[Crossref]

Apreleva, S. V.

Babilas, P.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

Baldwin, K. M.

K. M. Baldwin, “Transcutaneous oximetry and skin surface temperature as objective measures of pressure ulcer risk,” Adv. Skin Wound Care 14(1), 26–31 (2001).
[Crossref] [PubMed]

Bentley, G.

G. S. E. Dowd, K. Linge, and G. Bentley, “Measurement of transcutaneous oxygen pressure in normal and ischemic skin,” J. Bone Joint Surg. 65(1), 79–83 (1983).

Bishop, A.

A. Bishop, “Role of oxygen in wound healing,” J. Wound Care 17(9), 399–402 (2008).
[Crossref] [PubMed]

Boas, D. A.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

Boateng, J. S.

J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).
[Crossref] [PubMed]

Bogdan, C.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Borisov, S. M.

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

S. M. Borisov, G. Zenkl, and I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[Crossref] [PubMed]

Brackmann, F.

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Bull, B.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Burns, J. L.

J. L. Burns, J. S. Mancoll, and L. G. Phillips, “Impairments to wound healing,” Clin. Plast. Surg. 30(1), 47–56 (2003).
[Crossref] [PubMed]

Burris, D. G.

C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
[Crossref] [PubMed]

Caminiti, M.

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

Castiglione, K.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

Cheprakov, A. V.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

Chinsakchai, K.

C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
[Crossref] [PubMed]

Christensen, K.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Chu, C. S.

C. S. Chu, Y. L. Lo, and T. W. Sung, “Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix,” Talanta 82(3), 1044–1051 (2010).
[Crossref] [PubMed]

Clerici, G.

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

Coruh, A.

A. Coruh and Y. Yontar, “Application of split-thickness dermal grafts in deep partial- and full-thickness burns: a new source of auto-skin grafting,” J. Burn Care Res. 33(3), e94–e100 (2012).
[Crossref] [PubMed]

Curci, V.

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

Dowd, G. S. E.

G. S. E. Dowd, K. Linge, and G. Bentley, “Measurement of transcutaneous oxygen pressure in normal and ischemic skin,” J. Bone Joint Surg. 65(1), 79–83 (1983).

Drucker, W. R.

C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
[Crossref] [PubMed]

Dunphy, I.

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[Crossref] [PubMed]

Dupan, B. W.

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 147–152 (2002).
[Crossref] [PubMed]

Eccleston, G. M.

J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).
[Crossref] [PubMed]

Faglia, E.

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

Fatt, I.

G. H. Takahashi, I. Fatt, and T. K. Goldstick, “Oxygen consumption rate of tissue measured by a micropolarographic method,” J. Gen. Physiol. 50(2), 317–335 (1966).
[Crossref] [PubMed]

Fernandez-Seara, M. A.

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 147–152 (2002).
[Crossref] [PubMed]

Fowler, E.

M. Reddy, D. Keast, E. Fowler, and R. G. Sibbald, “Pain in pressure ulcers,” Ostomy Wound Manage. 49(4Suppl), 30–35 (2003).
[PubMed]

Goldstick, T. K.

G. H. Takahashi, I. Fatt, and T. K. Goldstick, “Oxygen consumption rate of tissue measured by a micropolarographic method,” J. Gen. Physiol. 50(2), 317–335 (1966).
[Crossref] [PubMed]

Gordillo, G. M.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

Gottrup, F.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

F. Gottrup, “Oxygen in wound healing and infection,” World J. Surg. 28(3), 312–315 (2004).
[Crossref] [PubMed]

Green, T. J.

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262(12), 5476–5482 (1987).
[PubMed]

Gurtner, G. C.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

Härmä, M.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Harmon, J. W.

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

Hofmann, J.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Hofmann, O. T.

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

Hunt, T. K.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

Jantsch, J.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Karrer, S.

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

Keast, D.

M. Reddy, D. Keast, E. Fowler, and R. G. Sibbald, “Pain in pressure ulcers,” Ostomy Wound Manage. 49(4Suppl), 30–35 (2003).
[PubMed]

Kelechi, T. J.

T. J. Kelechi and D. E. Neal, “Skin perfusion pressure in chronic venous disorders,” Adv. Skin Wound Care 21(12), 576–581 (2008).
[Crossref] [PubMed]

Kiraly, K.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Kirsner, R.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

Kittur, D. S.

J. W. Alexander, B. G. MacMillan, E. Law, and D. S. Kittur, “Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay,” J. Trauma 21(6), 433–438 (1981).
[PubMed]

Klimant, I.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

S. M. Borisov, G. Zenkl, and I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[Crossref] [PubMed]

Lahtinen, T.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Lambert, L.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

Landthaler, M.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

Law, E.

J. W. Alexander, B. G. MacMillan, E. Law, and D. S. Kittur, “Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay,” J. Trauma 21(6), 433–438 (1981).
[PubMed]

Lebedev, A. Y.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

Lee, S. T.

S. T. Lee and A. M. Scott, “Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole,” Semin. Nucl. Med. 37(6), 451–461 (2007).
[Crossref] [PubMed]

Liebsch, G.

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Linge, K.

G. S. E. Dowd, K. Linge, and G. Bentley, “Measurement of transcutaneous oxygen pressure in normal and ischemic skin,” J. Bone Joint Surg. 65(1), 79–83 (1983).

Link, M.

X. D. Wang, R. J. Meier, M. Link, and O. S. Wolfbeis, “Photographing oxygen distribution,” Angew. Chem. Int. Ed. Engl. 49(29), 4907–4909 (2010).
[Crossref] [PubMed]

Liu, L.

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

Lo, Y. L.

C. S. Chu, Y. L. Lo, and T. W. Sung, “Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix,” Talanta 82(3), 1044–1051 (2010).
[Crossref] [PubMed]

Longaker, M. T.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

MacMillan, B. G.

J. W. Alexander, B. G. MacMillan, E. Law, and D. S. Kittur, “Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay,” J. Trauma 21(6), 433–438 (1981).
[PubMed]

Mahawongkajit, P.

C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
[Crossref] [PubMed]

Mahnke, A.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Maisch, T.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

Makaroun, M. S.

H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
[Crossref] [PubMed]

Malcolm, D. S.

C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
[Crossref] [PubMed]

Mancoll, J. S.

J. L. Burns, J. S. Mancoll, and L. G. Phillips, “Impairments to wound healing,” Clin. Plast. Surg. 30(1), 47–56 (2003).
[Crossref] [PubMed]

Maniara, G.

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262(12), 5476–5482 (1987).
[PubMed]

Marletta, M. A.

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

Marti, G. P.

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

Matthews, K. H.

J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).
[Crossref] [PubMed]

McLaurin, E. J.

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

McNeill, J.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Meier, R. J.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

X. D. Wang, R. J. Meier, M. Link, and O. S. Wolfbeis, “Photographing oxygen distribution,” Angew. Chem. Int. Ed. Engl. 49(29), 4907–4909 (2010).
[Crossref] [PubMed]

Milner, S. M.

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

Moosa, H. H.

H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
[Crossref] [PubMed]

Mutirangura, P.

C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
[Crossref] [PubMed]

Neal, D. E.

T. J. Kelechi and D. E. Neal, “Skin perfusion pressure in chronic venous disorders,” Adv. Skin Wound Care 21(12), 576–581 (2008).
[Crossref] [PubMed]

Niedermair, F.

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

Nocera, D. G.

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

Olea, C.

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

Papp, A.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Peitzman, A. B.

H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
[Crossref] [PubMed]

Phillips, L. G.

J. L. Burns, J. S. Mancoll, and L. G. Phillips, “Impairments to wound healing,” Clin. Plast. Surg. 30(1), 47–56 (2003).
[Crossref] [PubMed]

Powell, C. C.

C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
[Crossref] [PubMed]

Prantl, L.

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

Quarantiello, A.

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

Reddy, M.

M. Reddy, D. Keast, E. Fowler, and R. G. Sibbald, “Pain in pressure ulcers,” Ostomy Wound Manage. 49(4Suppl), 30–35 (2003).
[PubMed]

Reece, S. Y.

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

Regensburger, J.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

Reinblatt, M.

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

Roy, S.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

Ruangsetakit, C.

C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
[Crossref] [PubMed]

Saf, R.

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

Sakadzic, S.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

Santarelli, F.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

Schatz, V.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Schleicher, U.

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

Schreml, S.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

Schultz, S. C.

C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
[Crossref] [PubMed]

Scott, A. M.

S. T. Lee and A. M. Scott, “Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole,” Semin. Nucl. Med. 37(6), 451–461 (2007).
[Crossref] [PubMed]

Sen, C. K.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen. 17(1), 1–18 (2009).
[Crossref] [PubMed]

Sibbald, R. G.

M. Reddy, D. Keast, E. Fowler, and R. G. Sibbald, “Pain in pressure ulcers,” Ostomy Wound Manage. 49(4Suppl), 30–35 (2003).
[PubMed]

Somalvico, F.

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

Steed, D. L.

H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
[Crossref] [PubMed]

Stevens, H. N.

J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).
[Crossref] [PubMed]

Sung, T. W.

C. S. Chu, Y. L. Lo, and T. W. Sung, “Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix,” Talanta 82(3), 1044–1051 (2010).
[Crossref] [PubMed]

Szeimies, R. M.

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

Takahashi, G. H.

G. H. Takahashi, I. Fatt, and T. K. Goldstick, “Oxygen consumption rate of tissue measured by a micropolarographic method,” J. Gen. Physiol. 50(2), 317–335 (1966).
[Crossref] [PubMed]

Trollmann, R.

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Uusaro, A.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Vanderkooi, J. M.

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262(12), 5476–5482 (1987).
[PubMed]

Vinogradov, S. A.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, “Tomographic imaging of oxygen by phosphorescence lifetime,” Appl. Opt. 45(33), 8547–8559 (2006).
[Crossref] [PubMed]

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 147–152 (2002).
[Crossref] [PubMed]

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[Crossref] [PubMed]

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

X. D. Wang, R. J. Meier, M. Link, and O. S. Wolfbeis, “Photographing oxygen distribution,” Angew. Chem. Int. Ed. Engl. 49(29), 4907–4909 (2010).
[Crossref] [PubMed]

Wang, X.-D.

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Weber, H.

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

Webster, M. W.

H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
[Crossref] [PubMed]

Wilson, D. F.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, “Tomographic imaging of oxygen by phosphorescence lifetime,” Appl. Opt. 45(33), 8547–8559 (2006).
[Crossref] [PubMed]

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 147–152 (2002).
[Crossref] [PubMed]

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[Crossref] [PubMed]

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262(12), 5476–5482 (1987).
[PubMed]

Winter, M. B.

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

X. D. Wang, R. J. Meier, M. Link, and O. S. Wolfbeis, “Photographing oxygen distribution,” Angew. Chem. Int. Ed. Engl. 49(29), 4907–4909 (2010).
[Crossref] [PubMed]

Wongwanit, C.

C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Xing, D.

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

Yontar, Y.

A. Coruh and Y. Yontar, “Application of split-thickness dermal grafts in deep partial- and full-thickness burns: a new source of auto-skin grafting,” J. Burn Care Res. 33(3), e94–e100 (2012).
[Crossref] [PubMed]

Zenkl, G.

S. M. Borisov, G. Zenkl, and I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[Crossref] [PubMed]

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

Zhang, X.

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

S. M. Borisov, G. Zenkl, and I. Klimant, “Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing,” ACS Appl. Mater. Interfaces 2(2), 366–374 (2010).
[Crossref] [PubMed]

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces 1(6), 1292–1304 (2009).
[Crossref] [PubMed]

Adv. Skin Wound Care (2)

T. J. Kelechi and D. E. Neal, “Skin perfusion pressure in chronic venous disorders,” Adv. Skin Wound Care 21(12), 576–581 (2008).
[Crossref] [PubMed]

K. M. Baldwin, “Transcutaneous oximetry and skin surface temperature as objective measures of pressure ulcer risk,” Adv. Skin Wound Care 14(1), 26–31 (2001).
[Crossref] [PubMed]

Anal. Biochem. (1)

I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

X. D. Wang, R. J. Meier, M. Link, and O. S. Wolfbeis, “Photographing oxygen distribution,” Angew. Chem. Int. Ed. Engl. 49(29), 4907–4909 (2010).
[Crossref] [PubMed]

C. Wu, B. Bull, K. Christensen, and J. McNeill, “Ratiometric single-nanoparticle oxygen sensors for biological imaging,” Angew. Chem. Int. Ed. Engl. 48(15), 2741–2745 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Br. J. Dermatol. (1)

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol. 163(2), 257–268 (2010).
[Crossref] [PubMed]

Burns (1)

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

X. D. Wang and O. S. Wolfbeis, “Optical methods for sensing and imaging oxygen materials, spectroscopies and applications,” Chem. Soc. Rev. 43(10), 3666–3761 (2014).
[Crossref] [PubMed]

Clin. Plast. Surg. (1)

J. L. Burns, J. S. Mancoll, and L. G. Phillips, “Impairments to wound healing,” Clin. Plast. Surg. 30(1), 47–56 (2003).
[Crossref] [PubMed]

Comp. Biochem. Physiol. A Mol. Integr. Physiol. (1)

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132(1), 147–152 (2002).
[Crossref] [PubMed]

Crit. Care Med. (1)

C. C. Powell, S. C. Schultz, D. G. Burris, W. R. Drucker, and D. S. Malcolm, “Subcutaneous oxygen tension: A useful adjunct in assessment of perfusion status,” Crit. Care Med. 23(5), 867–873 (1995).
[Crossref] [PubMed]

Exp. Dermatol. (1)

S. Schreml, R. J. Meier, O. S. Wolfbeis, T. Maisch, R. M. Szeimies, M. Landthaler, J. Regensburger, F. Santarelli, I. Klimant, and P. Babilas, “2D luminescence imaging of physiological wound oxygenation,” Exp. Dermatol. 20(7), 550–554 (2011).
[Crossref] [PubMed]

Inorg. Chem. (1)

F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes,” Inorg. Chem. 49(20), 9333–9342 (2010).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

M. B. Winter, E. J. McLaurin, S. Y. Reece, C. Olea, D. G. Nocera, and M. A. Marletta, “Ru-porphyrin protein scaffolds for sensing O2.,” J. Am. Chem. Soc. 132(16), 5582–5583 (2010).
[Crossref] [PubMed]

J. Biol. Chem. (1)

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem. 262(12), 5476–5482 (1987).
[PubMed]

J. Bone Joint Surg. (1)

G. S. E. Dowd, K. Linge, and G. Bentley, “Measurement of transcutaneous oxygen pressure in normal and ischemic skin,” J. Bone Joint Surg. 65(1), 79–83 (1983).

J. Burn Care Res. (1)

A. Coruh and Y. Yontar, “Application of split-thickness dermal grafts in deep partial- and full-thickness burns: a new source of auto-skin grafting,” J. Burn Care Res. 33(3), e94–e100 (2012).
[Crossref] [PubMed]

J. Gen. Physiol. (1)

G. H. Takahashi, I. Fatt, and T. K. Goldstick, “Oxygen consumption rate of tissue measured by a micropolarographic method,” J. Gen. Physiol. 50(2), 317–335 (1966).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

A. Mahnke, R. J. Meier, V. Schatz, J. Hofmann, K. Castiglione, U. Schleicher, O. S. Wolfbeis, C. Bogdan, and J. Jantsch, “Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages,” J. Invest. Dermatol. 134(9), 2339–2346 (2014), doi:.
[Crossref] [PubMed]

J. Pharm. Sci. (1)

J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, “Wound healing dressings and drug delivery systems: a review,” J. Pharm. Sci. 97(8), 2892–2923 (2008).
[Crossref] [PubMed]

J. Surg. Res. (1)

H. H. Moosa, M. S. Makaroun, A. B. Peitzman, D. L. Steed, and M. W. Webster, “TcPO2 Values in Limb Ischemia: Effects of Blood Flow and Arterial Oxygen Tension,” J. Surg. Res. 40(5), 482–487 (1986).
[Crossref] [PubMed]

J. Trauma (1)

J. W. Alexander, B. G. MacMillan, E. Law, and D. S. Kittur, “Treatment of severe burns with widely meshed skin autograft and meshed skin allograft overlay,” J. Trauma 21(6), 433–438 (1981).
[PubMed]

J. Wound Care (2)

C. Ruangsetakit, K. Chinsakchai, P. Mahawongkajit, C. Wongwanit, and P. Mutirangura, “Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia,” J. Wound Care 19(5), 202–206 (2010).
[Crossref] [PubMed]

A. Bishop, “Role of oxygen in wound healing,” J. Wound Care 17(9), 399–402 (2008).
[Crossref] [PubMed]

Methods Appl. Fluoresc. (1)

J. Hofmann, R. J. Meier, A. Mahnke, V. Schatz, F. Brackmann, R. Trollmann, C. Bogdan, G. Liebsch, X.-D. Wang, O. S. Wolfbeis, and J. Jantsch, “Ratiometric luminescence 2D in vivo imaging and monitoring of mouse skin oxygenation,” Methods Appl. Fluoresc. 1(4), 045002 (2013).
[Crossref]

Mikrochim. Acta (1)

Y. Amao, “Probes and Polymers for Optical Sensing of Oxygen,” Mikrochim. Acta 143(1), 1–12 (2003).
[Crossref]

Ostomy Wound Manage. (1)

M. Reddy, D. Keast, E. Fowler, and R. G. Sibbald, “Pain in pressure ulcers,” Ostomy Wound Manage. 49(4Suppl), 30–35 (2003).
[PubMed]

Semin. Nucl. Med. (1)

S. T. Lee and A. M. Scott, “Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole,” Semin. Nucl. Med. 37(6), 451–461 (2007).
[Crossref] [PubMed]

Talanta (1)

C. S. Chu, Y. L. Lo, and T. W. Sung, “Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix,” Talanta 82(3), 1044–1051 (2010).
[Crossref] [PubMed]

Vasc. Endovascular Surg. (1)

E. Faglia, G. Clerici, M. Caminiti, A. Quarantiello, V. Curci, and F. Somalvico, “Evaluation of feasibility of ankle pressure and foot oximetry values for the detection of critical limb ischemia in diabetic patients,” Vasc. Endovascular Surg. 44(3), 184–189 (2010).
[Crossref] [PubMed]

World J. Surg. (1)

F. Gottrup, “Oxygen in wound healing and infection,” World J. Surg. 28(3), 312–315 (2004).
[Crossref] [PubMed]

Wound Repair Regen. (3)

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen. 17(6), 763–771 (2009).
[Crossref] [PubMed]

C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen. 17(1), 1–18 (2009).
[Crossref] [PubMed]

D. Xing, L. Liu, G. P. Marti, X. Zhang, M. Reinblatt, S. M. Milner, and J. W. Harmon, “Hypoxia and hypoxia-inducible factor in the burn wound,” Wound Repair Regen. 19(2), 205–213 (2011).
[Crossref] [PubMed]

Other (2)

J. Barret-Nerin and D. N. Herndon, Principles and Practice of Burn Surgery (New York: Marcel Dekker, 2004).

N. J. Turro, Modern Molecular Photochemistry (University Science Books, Sausalito, CA, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A) Schematic diagram showing the application of the pO2-sensing bandage as a liquid, bandage solidification, application of the barrier layer, and bandage removal after pO2 measurement. The supply and consumption of oxygen in tissue balance to yield a measurable tissue oxygenation; B) balanced O2 consumption and replenishment in normal skin; C) decreased surface pO2 during tissue ischemia induced by arterial ligation; D) elevated surface pO2 due to decreased O2 consumption by necrotic tissue in a full-thickness burn; E) unaffected or slightly elevated surface pO2 in a full-thickness skin graft; F) elevated surface pO2 due to decreased O2 consumption at a partial-thickness skin graft, which is composed of non-viable epithelial cells and only a thin layer (30/1000 inch) of dermal cells.

Fig. 2
Fig. 2

Calibrating the oxygen-sensing bandage. A) System calibration curve based on phosphorescence intensity. Phosphorescent intensity is expressed as red-to-green channel intensity ratio. B) Timing events during the imaging process, showing the 500 μs illumination flash pulse relative to the phosphorescence decay of the oxygen sensor and the fluorescence decay of the reference dye; the camera shutter opens after predetermined delay times following the flash pulse; and phosphorescence emission convolved with the flash pulse. C) System calibration curve based on phosphorescence lifetime. D) Comparison between calculated and experimentally measured image brightness at camera delay time between 0 and 10 ms for Oxyphor R2-containing bandage under 0 mmHg pO2. Calculation of image brightness was based on the assumption that the flash pulse is a square pulse with 500 μs pulse duration, and the phosphorescence lifetime of Oxyphor R2 under 0 mmHg pO2 is 700 μs.

Fig. 3
Fig. 3

Sensing tissue ischemia in the rat hindlimb. Red indicates lower tissue oxygenation and yellow indicates higher tissue oxygenation. Dashed lines indicate boundaries of bandage-covered region. A) Photograph (top) and tissue oxygenation map (bottom) taken during arterial ligation (lower tissue oxygenation). B) Photograph (top) and tissue oxygenation map (bottom) taken under normal perfusion (higher tissue oxygenation). C) Transdermal pO2 measured by the sensing bandage and intramuscular pO2 measured by the Clark electrode during normal perfusion and ischemia induced by arterial ligation.

Fig. 4
Fig. 4

Equilibrium oxygen maps showing a decrease of tissue oxygen consumption (expressed as normalized % consumption) by compromised tissue on freshly excised porcine skin obtained using intensity- and lifetime-based measurement approaches. Blue indicates higher oxygen consumption by tissues. Red indicates lower oxygen consumption (provides a visual “warning” for physiologically compromised tissue in clinical applications). Dashed line indicates boundaries of bandage-covered region. Images shown for A) Circular burn imaged using intensity approach; B) Control skin imaged using intensity approach; C) Circular burn imaged using lifetime approach; D) Control skin imaged using lifetime approach.

Fig. 5
Fig. 5

Progression of a full-thickness burn on the paraspinal skin of a Yorkshire pig monitored by oxygen-sensing paint-on bandage. Images shown for A) control skin; B) immediately post-burn and C) 7 days post-burn. Top row: regular photographs; middle row: emission at 700 nm - oxygen-dependent phosphorescence signals are overwhelmed by the skin autofluorescence background; bottom-row: percent oxygen consumption (%) maps obtained after eliminating autofluorescence - blue indicates higher oxygen consumption by tissues. Red indicates lower oxygen consumption by tissues. Arrows indicate ink marks dividing burn and surrounding skin.

Fig. 6
Fig. 6

Incorporation of full-thickness and partial-thickness skin grafts on the paraspinal skin of a Yorkshire pig observed with the oxygen-sensing paint-on bandage. Top row: regular photographs; middle row: emission at 700 nm - oxygen-dependent phosphorescence signals are overwhelmed by the skin autofluorescence background; bottom-row: percent oxygen consumption (%) maps obtained after eliminating autofluorescence - blue indicates higher oxygen consumption by tissues. Red indicates lower oxygen consumption by tissues. Arrows indicate tattoo marks dividing grafts and surrounding skin. Images shown for A) full-thickness graft immediately post-grafting; B) partial-thickness graft immediately post-grafting; C) full-thickness graft at 1-month graft assessment; D) partial-thickness graft at 1-month graft assessment.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 0 /I= τ 0 /τ=1+ K SV [ O 2 ] ,
I(t)= I 0 e t τ P ,
I C (t)=(IP)(t)= 0 t I(tx)P(x)dx
B(D)= 0 I C (t)dt=N τ P 2 I 0 ( e τ F τ P 1) e D τ P ,D> τ F

Metrics