Abstract

Although hemoglobin oxygen saturation (sO2) in the microvasculature is an essential physiological parameter of local tissue functions, non-invasive measurement of microvascular sO2 is still challenging. Here, we demonstrated that visible-light optical coherence tomography (vis-OCT) can simultaneously provide three-dimensional anatomical tissue morphology, visualize microvasculature at the capillary level, and measure sO2 from the microvasculature in vivo. We utilized speckle contrast caused by the moving blood cells to enhance microvascular imaging. We applied a series of short-time inverse Fourier transforms to obtain the spectroscopic profile of blood optical attenuation, from which we quantified sO2. We validated the sO2 measurement in mouse ears in vivo through hypoxia and hyperoxia challenges. We further demonstrated that vis-OCT can continuously monitor dynamic changes of microvascular sO2.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography

Siyu Chen, Qi Liu, Xiao Shu, Brian Soetikno, Shanbao Tong, and Hao F. Zhang
Biomed. Opt. Express 7(9) 3377-3389 (2016)

Retinal oximetry in humans using visible-light optical coherence tomography [Invited]

Siyu Chen, Xiao Shu, Peter L. Nesper, Wenzhong Liu, Amani A. Fawzi, and Hao F. Zhang
Biomed. Opt. Express 8(3) 1415-1429 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Pugh and P. J. Ratcliffe, “Regulation of angiogenesis by hypoxia: role of the HIF system,” Nat. Med. 9(6), 677–684 (2003).
    [Crossref] [PubMed]
  2. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005).
    [Crossref] [PubMed]
  3. H. An and W. Lin, “Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging,” J. Cereb. Blood Flow Metab. 20(8), 1225–1236 (2000).
    [Crossref] [PubMed]
  4. S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
    [Crossref] [PubMed]
  5. M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).
  6. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
    [Crossref] [PubMed]
  7. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
  8. L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  9. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
    [Crossref] [PubMed]
  10. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
    [Crossref] [PubMed]
  11. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28(16), 1436–1438 (2003).
    [Crossref] [PubMed]
  12. C.-W. Lu, C.-K. Lee, M.-T. Tsai, Y.-M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33(5), 416–418 (2008).
    [Crossref] [PubMed]
  13. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005).
    [Crossref] [PubMed]
  14. L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
    [Crossref] [PubMed]
  15. R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
    [Crossref] [PubMed]
  16. R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19(24), 23831–23844 (2011).
    [Crossref] [PubMed]
  17. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  18. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
    [Crossref] [PubMed]
  19. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express 18(3), 2477–2494 (2010).
    [Crossref] [PubMed]
  20. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  21. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
    [Crossref] [PubMed]
  22. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
    [Crossref] [PubMed]
  23. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  24. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  25. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010).
    [Crossref] [PubMed]
  26. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
    [Crossref] [PubMed]
  27. N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref] [PubMed]
  28. S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
    [Crossref] [PubMed]

2014 (1)

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (8)

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[Crossref] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
[Crossref] [PubMed]

R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
[Crossref] [PubMed]

R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19(24), 23831–23844 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

2005 (2)

2004 (1)

2003 (2)

2000 (1)

H. An and W. Lin, “Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging,” J. Cereb. Blood Flow Metab. 20(8), 1225–1236 (2000).
[Crossref] [PubMed]

Aalders, M. C.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Aalders, M. C. G.

An, H.

H. An and W. Lin, “Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging,” J. Cereb. Blood Flow Metab. 20(8), 1225–1236 (2000).
[Crossref] [PubMed]

An, L.

Arai, K.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Backman, V.

Boas, D. A.

Bonesi, M.

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Carmeliet, P.

P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005).
[Crossref] [PubMed]

Devor, A.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Dewhirst, M. W.

M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).

Duker, J.

Dunn, A. K.

Duong, T. Q.

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Estrada, A.

Faber, D. J.

Fontanella, A.

M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).

Fujimoto, J.

Fujimoto, J. G.

Gabriele, M. L.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

Gorczynska, I.

Götzinger, E.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Hendargo, H.

M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).

Hillman, E. M. C.

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

Hitzenberger, C. K.

Hornegger, J.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Huang, D.

Ishikawa, H.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

Izatt, J. A.

M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).

Jaillon, F.

Jia, Y.

Kagemann, L.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

Kazmi, S.

Kiel, J.

Kiel, J. W.

Ko, T.

Kowalczyk, A.

Kraus, M. F.

Kuranov, R. V.

Lee, C.-K.

Lee, J.

Leitgeb, R. A.

Li, X.

Lin, W.

H. An and W. Lin, “Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging,” J. Cereb. Blood Flow Metab. 20(8), 1225–1236 (2000).
[Crossref] [PubMed]

Liu, J. J.

Liu, W.

Lo, E. H.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Lu, C.-W.

Makita, S.

Mandeville, E. T.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Maslov, K.

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).

Maslov, K. I.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

McElroy, A. B.

Mik, E. G.

Milner, T. E.

Miura, M.

Pircher, M.

Potsaid, B.

Pugh, C. W.

C. W. Pugh and P. J. Ratcliffe, “Regulation of angiogenesis by hypoxia: role of the HIF system,” Nat. Med. 9(6), 677–684 (2003).
[Crossref] [PubMed]

Qin, J.

Qiu, J.

Radhakrishnan, H.

Ratcliffe, P. J.

C. W. Pugh and P. J. Ratcliffe, “Regulation of angiogenesis by hypoxia: role of the HIF system,” Nat. Med. 9(6), 677–684 (2003).
[Crossref] [PubMed]

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Roussakis, E.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Ruvinskaya, S.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express 18(3), 2477–2494 (2010).
[Crossref] [PubMed]

Sakadzic, S.

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express 18(3), 2477–2494 (2010).
[Crossref] [PubMed]

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Salvaggio, A.

Schuman, J. S.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).

Skala, M. C.

M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).

Srinivasan, V.

Srinivasan, V. J.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express 18(3), 2477–2494 (2010).
[Crossref] [PubMed]

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).

Subhash, H.

Tan, O.

Tokayer, J.

Torzicky, T.

Townsend, K. A.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

Tsai, M.-T.

Tsytsarev, V.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

van Leeuwen, T. G.

Vinogradov, S. A.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36(7), 1134–1136 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).

Wang, R. K.

Wang, Y.

Wang, Y.-M.

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Wei, Q.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Wojtkowski, M.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

Wollstein, G.

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

Wu, W.

Xia, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Yamanari, M.

Yang, C. C.

Yao, J.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Yaseen, M. A.

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Yasuno, Y.

Yi, J.

Zhang, H. F.

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).

Zhang, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Zotter, S.

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).

Biomed. Opt. Express (1)

J. Biomed. Opt. (4)

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

H. An and W. Lin, “Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging,” J. Cereb. Blood Flow Metab. 20(8), 1225–1236 (2000).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Nat. Med. (1)

C. W. Pugh and P. J. Ratcliffe, “Regulation of angiogenesis by hypoxia: role of the HIF system,” Nat. Med. 9(6), 677–684 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods 7(9), 755–759 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Nature (1)

P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005).
[Crossref] [PubMed]

Opt. Express (8)

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with Optical Coherence Tomography,” Opt. Express 18(3), 2477–2494 (2010).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[Crossref] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
[Crossref] [PubMed]

J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
[Crossref] [PubMed]

R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19(24), 23831–23844 (2011).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

Proc. SPIE (1)

M. C. Skala, H. Hendargo, A. Fontanella, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for non-invasive hemodynamic imaging,” Proc. SPIE 7174, 71740I (2009).

Science (1)

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic of the experimental setup. A supercontinuum laser was used as the light source in an open space Michelson interferometer. A home-made spectrometer was used to collect the interference spectrum for imaging. M: mirror; DC: dispersion compensation; BS: beam splitter; GM: galvanometer mirrors.

Fig. 2
Fig. 2

(a-b) Examples of OCT cross-sectional images and microangraphies from a mouse ear in vivo. The cross-sectional angiography was obtained from a wavelength band centered at 602 nm with 15 nm FWHM. Bar: 0.2 mm. (c) Magnified view of the squared area in panel b at two different center wavelengths. An arteriole (A) and a venule (V) were labeled. (d) The spectral profiles from the arteriole and venule in panel c. (e) Calibration of the first derivative of the spectra to the spO2 reading from a pulse oximeter attached to the rear left leg of the animal. The OCT spectra were sampled from an arteriole. Error bar is the standard error of mean (s.e.m.) (n = 20 indicates 20 repeated measurements at same locations)

Fig. 3
Fig. 3

(a-b) Mean-value-projection images of the 3D OCT mosaic and the label-free microangiography from a mouse ear in vivo, where ten images were stitched. The black arrow in panel a highlights a sebaceous gland. Bar: 0.5mm. (c) Pseudo-colored overlay image of the highlighted areas in the panel a and panel b within the squares. The microvasculature is pseudo-colored in red. The black arrow highlights the same sebaceous gland as in the panel a and its surrounding vasculatures. (d) Functional microangiography with color-coded sO2 values. The colormap was created in HSV color space, where Hue was coded by the sO2 as the color bar, Saturation and Value are coded by the intensity of the microangiography. (e) Histogram of sO2 calculated from the selected arteriole and vein in panel d.

Fig. 4
Fig. 4

Functional microangiography under a static hypoxia-hyperoxia challenge. (a, c, e) sO2 maps under hypoxia (10% O2 content), normoxia (21% O2 content), and hyperoxia (100% O2 content) conditions. Sample areas from microvasculature, an arteriole and a vein were highlighted in the panel a. Bar = 0.2mm. (b, d, f) Comparison of average sO2 values from the sampled microvasculature (M), arteriole (A) and venule (V). Error bar = s.e.m. (n = 10) *p<0.05 comparing to the arteriole.

Fig. 5
Fig. 5

(a) En face microangiography in the x-y plane. sO2 dynamic change was continuously monitored at a x-z cross-sectional plane labeled by a yellow dash line. Arrows indicate four small vessels. Bar = 0.2mm. (b) spO2 from the pulse oximeter as a reference. Transient hypoxia challenge was achieved by turning off O2 supply for ~15s. (c) vis-OCT measurement of sO2 changes from four sampled small blood vessels (light pink) labeled in panel (a), and their average sO2 change (black), in comparison with the simultaneous spO2 readings from the pulse oximeter. The curves were smoothed by a 5s window.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

AGF(x, λ c )=arg[ A(x,z, t 0 , λ c ) A * (x,z, t 1 , λ c )dz ].
A'(x,z, t 1 , λ c )=A(x,z, t 0 , λ c )exp[iAGF(x, λ c )].
I(x,z, λ c )=| A'(x,z, t 1 , λ c )A(x,z, t 0 , λ c ) |.
I OCT (z,λ)=r I 0 (λ)exp[s O 2 μ t,HbO z(1s O 2 ) μ t,HbO z],
S= 0 L log( I OCT / I 0 )dz= 0 L [ s O 2 μ t,HbO +(1s O 2 ) μ t,Hb ]zdz = 1 2 [ s O 2 μ t,HbO +(1s O 2 ) μ t,Hb ] L 2 ,
dS dλ = 1 2 s O 2 L 2 ( d μ t Hb dλ d μ t HbO dλ ) 1 2 L 2 d μ t Hb dλ ,

Metrics