Abstract

Polarization second harmonic microscopy was used for collagen imaging in human non-small cell lung carcinoma and normal lung tissues ex vivo and revealed significant differences in the nonlinear susceptibility component ratio, demonstrating potential use in cancer diagnosis.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrastructural features of collagen in thyroid carcinoma tissue observed by polarization second harmonic generation microscopy

Danielle Tokarz, Richard Cisek, Ahmad Golaraei, Sylvia L. Asa, Virginijus Barzda, and Brian C. Wilson
Biomed. Opt. Express 6(9) 3475-3481 (2015)

Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy

Ahmad Golaraei, Lukas Kontenis, Richard Cisek, Danielle Tokarz, Susan J. Done, Brian C. Wilson, and Virginijus Barzda
Biomed. Opt. Express 7(10) 4054-4068 (2016)

Quantitative second harmonic generation microscopy for the structural characterization of capsular collagen in thyroid neoplasms

Radu Hristu, Lucian G. Eftimie, Stefan G. Stanciu, Denis E. Tranca, Bogdan Paun, Maria Sajin, and George A. Stanciu
Biomed. Opt. Express 9(8) 3923-3936 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer J. Clin. 63(1), 11–30 (2013).
    [Crossref] [PubMed]
  2. S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol. 192(3), 259–267 (2002).
    [Crossref] [PubMed]
  3. N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
    [Crossref] [PubMed]
  4. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
    [Crossref] [PubMed]
  5. A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
    [Crossref] [PubMed]
  6. A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
    [Crossref] [PubMed]
  7. A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
    [Crossref] [PubMed]
  8. A. Major, R. Cisek, and V. Barzda, “Femtosecond Yb : KGd(WO4)(2) laser oscillator pumped by a high power fiber-coupled diode laser module,” Opt. Express 14(25), 12163–12168 (2006).
    [Crossref] [PubMed]
  9. A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
    [Crossref] [PubMed]
  10. T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
    [Crossref] [PubMed]
  11. F. Fend and M. Raffeld, “Laser capture microdissection in pathology,” J. Clin. Pathol. 53(9), 666–672 (2000).
    [Crossref] [PubMed]

2013 (1)

R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer J. Clin. 63(1), 11–30 (2013).
[Crossref] [PubMed]

2012 (2)

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

2011 (2)

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

2010 (1)

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

2006 (1)

2005 (1)

T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
[Crossref] [PubMed]

2002 (1)

S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol. 192(3), 259–267 (2002).
[Crossref] [PubMed]

2001 (1)

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

2000 (1)

F. Fend and M. Raffeld, “Laser capture microdissection in pathology,” J. Clin. Pathol. 53(9), 666–672 (2000).
[Crossref] [PubMed]

Akens, M. K.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Alami, J.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Bakueva, L.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Barzda, V.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

A. Major, R. Cisek, and V. Barzda, “Femtosecond Yb : KGd(WO4)(2) laser oscillator pumped by a high power fiber-coupled diode laser module,” Opt. Express 14(25), 12163–12168 (2006).
[Crossref] [PubMed]

Bioulac-Sage, P.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Boudjéma, K.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Campagnola, P. J.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Campion, J. P.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Chen, X.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Cisek, R.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

A. Major, R. Cisek, and V. Barzda, “Femtosecond Yb : KGd(WO4)(2) laser oscillator pumped by a high power fiber-coupled diode laser module,” Opt. Express 14(25), 12163–12168 (2006).
[Crossref] [PubMed]

Clément, B.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Dumont, D. J.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Fend, F.

F. Fend and M. Raffeld, “Laser capture microdissection in pathology,” J. Clin. Pathol. 53(9), 666–672 (2000).
[Crossref] [PubMed]

Forti, S.

S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol. 192(3), 259–267 (2002).
[Crossref] [PubMed]

Jemal, A.

R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer J. Clin. 63(1), 11–30 (2013).
[Crossref] [PubMed]

Krouglov, S.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Lotrian, D.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Major, A.

Ménard, S.

S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol. 192(3), 259–267 (2002).
[Crossref] [PubMed]

Musso, O.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Nadiarynkh, O.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Naishadham, D.

R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer J. Clin. 63(1), 11–30 (2013).
[Crossref] [PubMed]

Plotnikov, S.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Prent, N.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Pupa, S. M.

S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol. 192(3), 259–267 (2002).
[Crossref] [PubMed]

Raffeld, M.

F. Fend and M. Raffeld, “Laser capture microdissection in pathology,” J. Clin. Pathol. 53(9), 666–672 (2000).
[Crossref] [PubMed]

Rowlands, J.

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Sandkuijl, D.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Siegel, R.

R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer J. Clin. 63(1), 11–30 (2013).
[Crossref] [PubMed]

Tagliabue, E.

S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol. 192(3), 259–267 (2002).
[Crossref] [PubMed]

Théret, N.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Tokarz, D.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Tuer, A.

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

Tuer, A. E.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Turlin, B.

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

Wess, T. J.

T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
[Crossref] [PubMed]

Whyne, C. M.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Wilson, B. C.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Yasufuku, K.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Adv. Protein Chem. (1)

T. J. Wess, “Collagen fibril form and function,” Adv. Protein Chem. 70, 341–374 (2005).
[Crossref] [PubMed]

Biophys. J. (1)

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer J. Clin. 63(1), 11–30 (2013).
[Crossref] [PubMed]

Hepatology (1)

N. Théret, O. Musso, B. Turlin, D. Lotrian, P. Bioulac-Sage, J. P. Campion, K. Boudjéma, and B. Clément, “Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas,” Hepatology 34(1), 82–88 (2001).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Tuer, D. Tokarz, N. Prent, R. Cisek, J. Alami, D. J. Dumont, L. Bakueva, J. Rowlands, and V. Barzda, “Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections,” J. Biomed. Opt. 15(2), 026018 (2010).
[Crossref] [PubMed]

J. Cell. Physiol. (1)

S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” J. Cell. Physiol. 192(3), 259–267 (2002).
[Crossref] [PubMed]

J. Clin. Pathol. (1)

F. Fend and M. Raffeld, “Laser capture microdissection in pathology,” J. Clin. Pathol. 53(9), 666–672 (2000).
[Crossref] [PubMed]

J. Comput. Chem. (1)

A. Tuer, S. Krouglov, R. Cisek, D. Tokarz, and V. Barzda, “Three-dimensional visualization of the first hyperpolarizability tensor,” J. Comput. Chem. 32(6), 1128–1134 (2011).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115(44), 12759–12769 (2011).
[Crossref] [PubMed]

Nat. Protoc. (1)

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Orientation of collagen fibers in the optical setup. XYZ is the laboratory coordinate system, and xyz is the fiber coordinate system. The red fiber indicates the weighted average of all fibers in the cone. The average-fiber orientation is defined by modified spherical coordinate angles α and δ in the laboratory frame. The incoming beam is shown by k ω and the outgoing SHG radiation is determined by k 2ω . Variables θ and φ are the polarizer and analyzer angles with respect to the Z-axis, respectively.
Fig. 2
Fig. 2 SHG polarization microscopy investigations of non-tumor (a-d) and tumor (e-h) area of lung tissue from the same patient. (a) and (e) H&E stained images of the sample area; (b) and (f) SHG intensity images of corresponding region marked with black square in panels (a) and (e), respectively. The number on top right is intensity; (c) and (g) susceptibility ratio map, where pixel color represents ratio value shown in the color bar; (d) and (h) susceptibility component ratio occurrence histogram of corresponding images (c) and (g) where the blue line represents the data, while the black dashed-line is the fit of the data and red lines represent the fitted two-population distributions of the ratio. In panel (d) the first population has mean susceptibility ratio 1.87 ± 0.02, with distribution width of 0.38 ± 0.01. While the second population has mean susceptibility ratio 2.27 ± 0.02, with distribution width of 0.66 ± 0.02. In panel (h) the first population has mean susceptibility ratio 2.19 ± 0.01, with distribution width of 0.52 ± 0.01. While the second population has mean susceptibility ratio 2.51 ± 0.02, with distribution width of 0.75 ± 0.02.

Tables (1)

Tables Icon

Table 1 Average fitting parameter values for the susceptibility ratio occurrence histogram*

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ ZZZ (2) χ ZXX (2) = ( χ zzz (2) χ zxx (2) 3 ) cos 2 α cos 2 δ+3 ( χ zzz (2) χ zxx (2) 3 ) cos 2 α sin 2 δ+1
I 2ω | sin( φδ )( χ XXX (2) χ ZXX (2) sin( θδ )+sin2( θδ )+ χ XZZ (2) χ ZXX (2) cos 2 ( θδ ) ) +cos( φδ )( sin 2 ( θδ )+ χ XZZ (2) χ ZXX (2) sin2( θδ )+ χ ZZZ (2) χ ZXX (2) cos 2 ( θδ ) ) | 2
χ ZZZ (2) χ ZXX (2) = A 1 [ ( f 1 ( χ zzz (2) χ zxx (2) )3 ) cos 2 ( g 1 (α) )+3 ]+ A 2 [ ( f 2 ( χ zzz (2) χ zxx (2) )3 ) cos 2 ( g 2 (α) )+3 ]

Metrics