Abstract

Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
OCT-based crystalline lens topography in accommodating eyes

Pablo Pérez-Merino, Miriam Velasco-Ocana, Eduardo Martinez-Enriquez, and Susana Marcos
Biomed. Opt. Express 6(12) 5039-5054 (2015)

In vivo human crystalline lens topography

Sergio Ortiz, Pablo Pérez-Merino, Enrique Gambra, Alberto de Castro, and Susana Marcos
Biomed. Opt. Express 3(10) 2471-2488 (2012)

Three-dimensional OCT based guinea pig eye model: relating morphology and optics

Pablo Pérez-Merino, Miriam Velasco-Ocana, Eduardo Martinez-Enriquez, Luis Revuelta, Sally A McFadden, and Susana Marcos
Biomed. Opt. Express 8(4) 2173-2184 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
    [Crossref] [PubMed]
  2. A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
    [Crossref] [PubMed]
  3. R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
    [Crossref] [PubMed]
  4. J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
    [Crossref] [PubMed]
  5. M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
    [Crossref] [PubMed]
  6. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
    [Crossref] [PubMed]
  7. R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci. 36(3), 703–707 (1995).
    [PubMed]
  8. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
    [Crossref] [PubMed]
  9. J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
    [PubMed]
  10. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
    [Crossref] [PubMed]
  11. D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
    [Crossref] [PubMed]
  12. B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
    [Crossref] [PubMed]
  13. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [Crossref] [PubMed]
  14. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
    [Crossref] [PubMed]
  15. D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
    [PubMed]
  16. G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 16, 135–143 (1996).
  17. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [Crossref] [PubMed]
  18. S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
    [Crossref] [PubMed]
  19. L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
    [Crossref] [PubMed]
  20. E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
    [Crossref] [PubMed]
  21. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
    [Crossref] [PubMed]
  22. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  23. A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A 27(7), 1541–1548 (2010).
    [Crossref] [PubMed]
  24. A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
    [Crossref] [PubMed]
  25. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
    [Crossref] [PubMed]
  26. S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28(9), 1594–1600 (2002).
    [Crossref] [PubMed]
  27. J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23(1), 59–70 (1983).
    [Crossref] [PubMed]
  28. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
    [Crossref] [PubMed]
  29. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
    [Crossref] [PubMed]
  30. M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(7), 10 (2007).
    [Crossref] [PubMed]
  31. C. Y. Park, J. H. Oh, and R. S. Chuck, “Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study,” Curr. Eye Res. 38(8), 851–861 (2013).
    [Crossref] [PubMed]
  32. L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
    [Crossref] [PubMed]
  33. A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
    [Crossref] [PubMed]
  34. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
    [Crossref] [PubMed]
  35. J. C. Barry, M. Dunne, and T. Kirschkamp, “Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 21, 450–460 (2001).
  36. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref] [PubMed]
  37. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  38. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
    [Crossref] [PubMed]
  39. S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
    [Crossref] [PubMed]
  40. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express 3(5), 814–824 (2012).
    [Crossref] [PubMed]
  41. R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
    [PubMed]
  42. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  43. L. N. Thibos and D. Horner, “Power vector analysis of the optical outcome of refractive surgery,” J. Cataract Refract. Surg. 27(1), 80–85 (2001).
    [Crossref] [PubMed]
  44. Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
    [Crossref] [PubMed]
  45. A. Gargallo, J. Arines, and E. Acosta, “Lens aberrations and their relationship with lens sutures for species with Y-suture branches,” J. Biomed. Opt. 18(2), 025003 (2013).
    [Crossref] [PubMed]
  46. A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
    [Crossref] [PubMed]
  47. J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
    [Crossref] [PubMed]
  48. E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
    [Crossref] [PubMed]
  49. K. Hayashi, M. Masumoto, S. Fujino, and F. Hayashi, “[Changes in corneal astigmatism with aging],” Nippon Ganka Gakkai Zasshi 97(10), 1193–1196 (1993).
    [PubMed]
  50. J. D. Ho, S. W. Liou, R. J. Tsai, and C. Y. Tsai, “Effects of aging on anterior and posterior corneal astigmatism,” Cornea 29(6), 632–637 (2010).
    [PubMed]
  51. L. J. Alvarez, H. C. Turner, O. A. Candia, and L. A. Polikoff, “Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance,” Curr. Eye Res. 26(2), 95–105 (2003).
    [Crossref] [PubMed]
  52. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
    [Crossref] [PubMed]
  53. D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
    [Crossref] [PubMed]
  54. S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
    [Crossref] [PubMed]
  55. E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15(5), 055001 (2010).
    [Crossref] [PubMed]
  56. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [Crossref] [PubMed]

2014 (2)

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[PubMed]

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

2013 (6)

C. Y. Park, J. H. Oh, and R. S. Chuck, “Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study,” Curr. Eye Res. 38(8), 851–861 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

A. Gargallo, J. Arines, and E. Acosta, “Lens aberrations and their relationship with lens sutures for species with Y-suture branches,” J. Biomed. Opt. 18(2), 025003 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (5)

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

2010 (4)

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15(5), 055001 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A 27(7), 1541–1548 (2010).
[Crossref] [PubMed]

J. D. Ho, S. W. Liou, R. J. Tsai, and C. Y. Tsai, “Effects of aging on anterior and posterior corneal astigmatism,” Cornea 29(6), 632–637 (2010).
[PubMed]

2009 (2)

2008 (4)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref] [PubMed]

2007 (2)

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(7), 10 (2007).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[Crossref] [PubMed]

2006 (3)

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

2004 (6)

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

2003 (1)

L. J. Alvarez, H. C. Turner, O. A. Candia, and L. A. Polikoff, “Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance,” Curr. Eye Res. 26(2), 95–105 (2003).
[Crossref] [PubMed]

2002 (1)

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28(9), 1594–1600 (2002).
[Crossref] [PubMed]

2001 (5)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

L. N. Thibos and D. Horner, “Power vector analysis of the optical outcome of refractive surgery,” J. Cataract Refract. Surg. 27(1), 80–85 (2001).
[Crossref] [PubMed]

J. C. Barry, M. Dunne, and T. Kirschkamp, “Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 21, 450–460 (2001).

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

2000 (1)

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

1999 (1)

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

1998 (1)

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

1996 (1)

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 16, 135–143 (1996).

1995 (2)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci. 36(3), 703–707 (1995).
[PubMed]

1993 (1)

K. Hayashi, M. Masumoto, S. Fujino, and F. Hayashi, “[Changes in corneal astigmatism with aging],” Nippon Ganka Gakkai Zasshi 97(10), 1193–1196 (1993).
[PubMed]

1992 (1)

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

1984 (1)

M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
[Crossref] [PubMed]

1983 (1)

J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23(1), 59–70 (1983).
[Crossref] [PubMed]

Acosta, E.

A. Gargallo, J. Arines, and E. Acosta, “Lens aberrations and their relationship with lens sutures for species with Y-suture branches,” J. Biomed. Opt. 18(2), 025003 (2013).
[Crossref] [PubMed]

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15(5), 055001 (2010).
[Crossref] [PubMed]

Adams, A. J.

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

Alejandre, N.

Ali, S. F.

D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
[Crossref] [PubMed]

Alvarez, L. J.

L. J. Alvarez, H. C. Turner, O. A. Candia, and L. A. Polikoff, “Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance,” Curr. Eye Res. 26(2), 95–105 (2003).
[Crossref] [PubMed]

Amelinckx, A.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Arines, J.

A. Gargallo, J. Arines, and E. Acosta, “Lens aberrations and their relationship with lens sutures for species with Y-suture branches,” J. Biomed. Opt. 18(2), 025003 (2013).
[Crossref] [PubMed]

Arrieta, E.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Artal, P.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15(5), 055001 (2010).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Atchison, D. A.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

Augusteyn, R. C.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

Barbero, S.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref] [PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28(9), 1594–1600 (2002).
[Crossref] [PubMed]

Barry, J. C.

J. C. Barry, M. Dunne, and T. Kirschkamp, “Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 21, 450–460 (2001).

Berrio, E.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Birkenfeld, J.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

Borja, D.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Bron, A. J.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

Bueno, J. M.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15(5), 055001 (2010).
[Crossref] [PubMed]

Campbell, M. C.

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
[Crossref] [PubMed]

Candia, O. A.

L. J. Alvarez, H. C. Turner, O. A. Candia, and L. A. Polikoff, “Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance,” Curr. Eye Res. 26(2), 95–105 (2003).
[Crossref] [PubMed]

Chan, Y. H.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Chen, S. J.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Cheng, C. Y.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Chia, N.

Chou, P.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Chuck, R. S.

C. Y. Park, J. H. Oh, and R. S. Chuck, “Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study,” Curr. Eye Res. 38(8), 851–861 (2013).
[Crossref] [PubMed]

de Castro, A.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

DeMarco, J. K.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

Dorronsoro, C.

Dubbelman, M.

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(7), 10 (2007).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Dunne, M.

J. C. Barry, M. Dunne, and T. Kirschkamp, “Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 21, 450–460 (2001).

Durán, S.

Fernandez, V.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Fong, A.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Fujino, S.

K. Hayashi, M. Masumoto, S. Fujino, and F. Hayashi, “[Changes in corneal astigmatism with aging],” Nippon Ganka Gakkai Zasshi 97(10), 1193–1196 (1993).
[PubMed]

Gambra, E.

Gargallo, A.

A. Gargallo, J. Arines, and E. Acosta, “Lens aberrations and their relationship with lens sutures for species with Y-suture branches,” J. Biomed. Opt. 18(2), 025003 (2013).
[Crossref] [PubMed]

Garner, L. F.

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 16, 135–143 (1996).

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci. 36(3), 703–707 (1995).
[PubMed]

Garway-Heath, D. F.

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

Gazzard, G.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Glasser, A.

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Gora, M.

Gorczynska, I.

Grulkowski, I.

Gudmundsdottir, E.

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

Guirao, A.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Hamaoui, M.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Hayashi, F.

K. Hayashi, M. Masumoto, S. Fujino, and F. Hayashi, “[Changes in corneal astigmatism with aging],” Nippon Ganka Gakkai Zasshi 97(10), 1193–1196 (1993).
[PubMed]

Hayashi, K.

K. Hayashi, M. Masumoto, S. Fujino, and F. Hayashi, “[Changes in corneal astigmatism with aging],” Nippon Ganka Gakkai Zasshi 97(10), 1193–1196 (1993).
[PubMed]

Hemenger, R. P.

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci. 36(3), 703–707 (1995).
[PubMed]

Ho, A.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Ho, J. D.

J. D. Ho, S. W. Liou, R. J. Tsai, and C. Y. Tsai, “Effects of aging on anterior and posterior corneal astigmatism,” Cornea 29(6), 632–637 (2010).
[PubMed]

Horner, D.

L. N. Thibos and D. Horner, “Power vector analysis of the optical outcome of refractive surgery,” J. Cataract Refract. Surg. 27(1), 80–85 (2001).
[Crossref] [PubMed]

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

Hsu, W. M.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Jain, R.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Jenkins, R.

D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
[Crossref] [PubMed]

Jimenez-Alfaro, I.

Jiménez-Alfaro, I.

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[Crossref] [PubMed]

Jonasson, F.

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

Jones, C. E.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

Jonsson, V.

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

Kirschkamp, T.

J. C. Barry, M. Dunne, and T. Kirschkamp, “Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 21, 450–460 (2001).

Koch, D. D.

D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
[Crossref] [PubMed]

Koretz, J. E.

Kotecha, A.

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Kowalczyk, A.

Kreuzer, R. O.

J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23(1), 59–70 (1983).
[Crossref] [PubMed]

Kuszak, J. R.

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Lim, L.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Lin, P. Y.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Liou, S. W.

J. D. Ho, S. W. Liou, R. J. Tsai, and C. Y. Tsai, “Effects of aging on anterior and posterior corneal astigmatism,” Cornea 29(6), 632–637 (2010).
[PubMed]

Liu, C. J.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Liu, J. H.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Liu, Y. C.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Llorente, L.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[Crossref] [PubMed]

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Maceo, B. M.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

Manns, F.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Marcos, S.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express 3(5), 814–824 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A 27(7), 1541–1548 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28(9), 1594–1600 (2002).
[Crossref] [PubMed]

Masumoto, M.

K. Hayashi, M. Masumoto, S. Fujino, and F. Hayashi, “[Changes in corneal astigmatism with aging],” Nippon Ganka Gakkai Zasshi 97(10), 1193–1196 (1993).
[PubMed]

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

Merayo-Lloves, J.

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28(9), 1594–1600 (2002).
[Crossref] [PubMed]

Michael, R.

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

Mihashi, T.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

Mutti, D. O.

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

Nankivil, D.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

Oh, J. H.

C. Y. Park, J. H. Oh, and R. S. Chuck, “Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study,” Curr. Eye Res. 38(8), 851–861 (2013).
[Crossref] [PubMed]

Ooi, C. S.

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci. 36(3), 703–707 (1995).
[PubMed]

Ortiz, S.

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express 3(5), 814–824 (2012).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

Parel, J. M.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Park, C. Y.

C. Y. Park, J. H. Oh, and R. S. Chuck, “Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study,” Curr. Eye Res. 38(8), 851–861 (2013).
[Crossref] [PubMed]

Pascual, D.

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

Pérez-Escudero, A.

Perez-Merino, P.

Pérez-Merino, P.

Polikoff, L. A.

L. J. Alvarez, H. C. Turner, O. A. Candia, and L. A. Polikoff, “Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance,” Curr. Eye Res. 26(2), 95–105 (2003).
[Crossref] [PubMed]

Pope, J. M.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

Pourjavan, S.

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

Remon, L.

Roorda, A.

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

Rosales, P.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

Rosen, A. M.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Russell, R. A.

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

Sandadi, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Sasaki, H.

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

Sasaki, K.

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

Saw, S. M.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Schwarz, C.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15(5), 055001 (2010).
[Crossref] [PubMed]

Semmlow, J. L.

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

Shirayama, M.

D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
[Crossref] [PubMed]

Sicam, V. A.

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(7), 10 (2007).
[Crossref] [PubMed]

Siedlecki, D.

Sim, E. L.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Sinapis, A.

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

Sinapis, D.

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

Sivak, J. G.

J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23(1), 59–70 (1983).
[Crossref] [PubMed]

Smith, G.

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 16, 135–143 (1996).

Stefánsson, E.

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

Strenk, L. M.

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

Strenk, S. A.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

Szkulmowski, M.

Szlag, D.

Tan, D.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Thibos, L. N.

L. N. Thibos and D. Horner, “Power vector analysis of the optical outcome of refractive surgery,” J. Cataract Refract. Surg. 27(1), 80–85 (2001).
[Crossref] [PubMed]

Tiedemann, C. E.

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Tong, L.

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

Tsai, C. Y.

J. D. Ho, S. W. Liou, R. J. Tsai, and C. Y. Tsai, “Effects of aging on anterior and posterior corneal astigmatism,” Cornea 29(6), 632–637 (2010).
[PubMed]

Tsai, R. J.

J. D. Ho, S. W. Liou, R. J. Tsai, and C. Y. Tsai, “Effects of aging on anterior and posterior corneal astigmatism,” Cornea 29(6), 632–637 (2010).
[PubMed]

Turner, H. C.

L. J. Alvarez, H. C. Turner, O. A. Candia, and L. A. Polikoff, “Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance,” Curr. Eye Res. 26(2), 95–105 (2003).
[Crossref] [PubMed]

Uhlhorn, S.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

van der Heijde, R.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

van der Heijde, R. G.

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(7), 10 (2007).
[Crossref] [PubMed]

Velasco-Ocana, M.

Wang, L.

D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
[Crossref] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

Weikert, M. P.

D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
[Crossref] [PubMed]

Williams, D. R.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Wojciechowski, R.

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

Wojtkowski, M.

Yao, S.

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

Zadnik, K.

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

Ziebarth, N.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Ziebarth, N. M.

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Zipper, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Zoltoski, R. K.

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Acta Ophthalmol. Scand. (1)

E. Gudmundsdottir, F. Jonasson, V. Jonsson, E. Stefánsson, H. Sasaki, K. Sasaki, and Iceland-Japan Co-Working Study Groups, ““With the rule” astigmatism is not the rule in the elderly. Reykjavik Eye Study: a population based study of refraction and visual acuity in citizens of Reykjavik 50 years and older,” Acta Ophthalmol. Scand. 78(6), 642–646 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (5)

BMC Ophthalmol. (1)

A. Kotecha, R. A. Russell, A. Sinapis, S. Pourjavan, D. Sinapis, and D. F. Garway-Heath, “Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes,” BMC Ophthalmol. 14(1), 11 (2014).
[Crossref] [PubMed]

Cornea (1)

J. D. Ho, S. W. Liou, R. J. Tsai, and C. Y. Tsai, “Effects of aging on anterior and posterior corneal astigmatism,” Cornea 29(6), 632–637 (2010).
[PubMed]

Curr. Eye Res. (2)

L. J. Alvarez, H. C. Turner, O. A. Candia, and L. A. Polikoff, “Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance,” Curr. Eye Res. 26(2), 95–105 (2003).
[Crossref] [PubMed]

C. Y. Park, J. H. Oh, and R. S. Chuck, “Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study,” Curr. Eye Res. 38(8), 851–861 (2013).
[Crossref] [PubMed]

Exp. Eye Res. (1)

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[Crossref] [PubMed]

Int. J. Dev. Biol. (1)

J. R. Kuszak, R. K. Zoltoski, and C. E. Tiedemann, “Development of lens sutures,” Int. J. Dev. Biol. 48(8-9), 889–902 (2004).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (8)

Y. C. Liu, P. Chou, R. Wojciechowski, P. Y. Lin, C. J. Liu, S. J. Chen, J. H. Liu, W. M. Hsu, and C. Y. Cheng, “Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study,” Invest. Ophthalmol. Vis. Sci. 52(13), 9651–9657 (2011).
[Crossref] [PubMed]

L. Lim, G. Gazzard, Y. H. Chan, A. Fong, A. Kotecha, E. L. Sim, D. Tan, L. Tong, and S. M. Saw, “Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 49(9), 3852–3857 (2008).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

R. P. Hemenger, L. F. Garner, and C. S. Ooi, “Change with age of the refractive index gradient of the human ocular lens,” Invest. Ophthalmol. Vis. Sci. 36(3), 703–707 (1995).
[PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

A. Gargallo, J. Arines, and E. Acosta, “Lens aberrations and their relationship with lens sutures for species with Y-suture branches,” J. Biomed. Opt. 18(2), 025003 (2013).
[Crossref] [PubMed]

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15(5), 055001 (2010).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (4)

D. D. Koch, S. F. Ali, M. P. Weikert, M. Shirayama, R. Jenkins, and L. Wang, “Contribution of posterior corneal astigmatism to total corneal astigmatism,” J. Cataract Refract. Surg. 38(12), 2080–2087 (2012).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg. 33(2), 217–226 (2007).
[Crossref] [PubMed]

L. N. Thibos and D. Horner, “Power vector analysis of the optical outcome of refractive surgery,” J. Cataract Refract. Surg. 27(1), 80–85 (2001).
[Crossref] [PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28(9), 1594–1600 (2002).
[Crossref] [PubMed]

J. Mod. Opt. (1)

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

J. Vis. (6)

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(7), 10 (2007).
[Crossref] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis. 11(13), 23 (2011).
[Crossref] [PubMed]

Mol. Vis. (1)

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J. M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Nippon Ganka Gakkai Zasshi (1)

K. Hayashi, M. Masumoto, S. Fujino, and F. Hayashi, “[Changes in corneal astigmatism with aging],” Nippon Ganka Gakkai Zasshi 97(10), 1193–1196 (1993).
[PubMed]

Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians (2)

J. C. Barry, M. Dunne, and T. Kirschkamp, “Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 21, 450–460 (2001).

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Ophthal. Physiol. Opt.: J. Br. College Ophthal. Opticians 16, 135–143 (1996).

Ophthalmic Physiol. Opt. (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

Opt. Express (2)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

R. Michael and A. J. Bron, “The ageing lens and cataract: a model of normal and pathological ageing,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1568), 1278–1292 (2011).
[Crossref] [PubMed]

Vision Res. (11)

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

M. C. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24(5), 409–415 (1984).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41(8), 973–979 (2001).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[Crossref] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res. 48(1), 70–79 (2008).
[Crossref] [PubMed]

J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23(1), 59–70 (1983).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Upper panels: Anterior-up OCT images corresponding to the anterior-up position of one of the crystalline lenses imaged, with (a) OCT focused on the anterior surface and (b) OCT focused on the posterior surface and the image of the cuvette. The detected surfaces are also marked in blue (anterior surface) red (posterior surface) and green (cuvette). Lower panels: 3-D OCT data from images of the crystalline lens with (c) the anterior surface up and (d) the posterior surface up. The blue and red points correspond to the segmented anterior and posterior surfaces of the lens, respectively. The green points and the black points correspond to the cuvette imaged through the lens, therefore distorted by the lens, and the cuvette without distortion respectively.
Fig. 2
Fig. 2 Lens surface elevation maps for all lenses, ordered by age. By convention, the maps are aligned so that the steepest meridian of the anterior lens surface lies in the vertical axis. Anterior and posterior images are shown as mirrored in the vertical axis. Asterisks indicate pairs of lenses from the same donor.
Fig. 3
Fig. 3 (a) Radii of curvature of anterior and posterior lens surface at their corresponding steepest meridian as a function of age (b) Radii of curvature of anterior and posterior lens surface at their corresponding flattest meridian as a function of age. Data were obtained from fits to biconic surfaces. Open circles represent data of the anterior lens surface and solid circles represent data of the posterior lens surface.
Fig. 4
Fig. 4 (a) Conic constants of anterior and posterior lens surface at their corresponding steepest meridian as a function of age. (b) Conic constants of the posterior lens surface at their corresponding flattest meridian as a function of age. Data were obtained from fits to biconic surfaces. Open triangles represent data of the anterior lens surface and solid triangles represent data of the posterior lens surface.
Fig. 5
Fig. 5 (a) Magnitude of lens surface astigmatism in the anterior and posterior lens surface as a function of age. (b) Correlation of the magnitude of astigmatism between anterior and posterior surfaces
Fig. 6
Fig. 6 (a) Anterior astigmatism power vector polar plot with the steepest meridian aligned at 90 deg, by convention; (b) Posterior astigmatism power vector polar plot. The angle (from the vertical axis) represents the relative angle between the anterior and posterior astigmatic axis. Each arrow represents one lens, the length of the vectors represent the magnitude of the corresponding astigmatism in diopters.
Fig. 7
Fig. 7 Relative angle between anterior and posterior lens surface astigmatic axis as a function of age (Slope: −0.53 deg/year; r = 0.305; p = 0.071);
Fig. 8
Fig. 8 (a) Trefoil-v Z 3 3 : Anterior vs. Posterior (Slope = 0.387,r = 0.467, p = 0.004) (b) RMS 3th order terms: Anterior vs. Posterior (Slope = 0.019; r = 0.477, p = 0.003; (c) RMS Coma: Anterior vs. Posterior (Slope = 0.387; r = 0.617, p = 0.0001) (d) 4th order RMS: Anterior vs. Posterior (Slope = 0.387.; r = 0.423, p = 0.010.)
Fig. 9
Fig. 9 Lens elevation high order RMS terms; RMS coma: slope = −0.087μm/year, r = 0.582 and p = 0.0001for anterior surface, slope = −0.123μm/year, r = 0.515and p = 0.001 for posterior surface; (b) RMS spherical: slope = −0.175 μm /year, r = 0.439, p = 0.007 for anterior surface only (c) 3rd order RMS: slope = −0.083μm/year, r = 0.564 and p = 0.0001 for anterior surface only
Fig. 10
Fig. 10 Relative contribution of different Zernike terms to the overall surface elevation maps (in terms of RMS2) with an asterisk the terms that change statistically significantly with age.

Tables (1)

Tables Icon

Table 1 Mean and standard deviation of the RMS of high-order Zernike coefficients for anterior and posterior lens surfaces. The Pearson correlation coefficient and the p-value are shown for the correlation with age of these parameters in each surface and between surfaces.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C=( n 2 n 1 )×( 1 R x 1 R y )
α= tan 1 ( J 45 J 180 )/2

Metrics