Abstract

Accurate and timely assessment of burn wound severity is a critical component of wound management and has implications related to course of treatment. While most superficial burns and full thickness burns are easily diagnosed through visual inspection, burns that fall between these extremes are challenging to classify based on clinical appearance. Because of this, appropriate burn management may be delayed, increasing the risk of scarring and infection. Here we present an investigation that employs spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) as non-invasive technologies to characterize in-vivo burn severity. We used SFDI and LSI to investigate controlled burn wounds of graded severity in a Yorkshire pig model. Burn wounds were imaged starting at one hour after the initial injury and daily at approximately 24, 48 and 72 hours post burn. Biopsies were taken on each day in order to correlate the imaging data to the extent of burn damage as indicated via histological analysis. Changes in reduced scattering coefficient and blood flow could be used to categorize burn severity as soon as one hour after the burn injury. The results of this study suggest that SFDI and LSI information have the potential to provide useful metrics for quantifying the extent and severity of burn injuries.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A polarized multispectral imaging system for quantitative assessment of hypertrophic scars

Pejhman Ghassemi, Taryn E. Travis, Lauren T. Moffatt, Jeffrey W. Shupp, and Jessica C. Ramella-Roman
Biomed. Opt. Express 5(10) 3337-3354 (2014)

Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model

Syeda Tabassum, Yanyu Zhao, Raeef Istfan, Junjie Wu, David J. Waxman, and Darren Roblyer
Biomed. Opt. Express 7(10) 4154-4170 (2016)

Quantitative assessment of renal arterial occlusion in a porcine model using spatial frequency domain imaging

K. P. Nadeau, A. Ponticorvo, H. J. Lee, D. Lu, A. J. Durkin, and B. J. Tromberg
Opt. Lett. 38(18) 3566-3569 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. E. White and E. M. Renz, “Advances in surgical care: management of severe burn injury,” Crit. Care Med. 36(7Suppl), S318–S324 (2008).
    [Crossref] [PubMed]
  2. L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” J. Burns Wounds 5, e2 (2006).
    [PubMed]
  3. D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
    [Crossref] [PubMed]
  4. A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
    [Crossref] [PubMed]
  5. H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
    [Crossref] [PubMed]
  6. S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
    [Crossref] [PubMed]
  7. M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
    [Crossref] [PubMed]
  8. C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
    [Crossref] [PubMed]
  9. M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
    [Crossref] [PubMed]
  10. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
    [Crossref] [PubMed]
  11. S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
    [Crossref] [PubMed]
  12. M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).
    [Crossref] [PubMed]
  13. J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
    [PubMed]
  14. K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
    [Crossref] [PubMed]
  15. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
    [Crossref] [PubMed]
  16. K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
    [Crossref] [PubMed]
  17. K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
    [Crossref] [PubMed]
  18. M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
    [Crossref] [PubMed]
  19. M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
    [Crossref] [PubMed]
  20. D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011).
    [Crossref] [PubMed]
  21. A. J. Durkin, J. G. Kim, and D. J. Cuccia, “Quantitative Near Infrared Imaging of Skin Flaps,” in BioMed 2008, (American Society of Mechanical Engineers, 2008).
  22. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Spatially-modulated near-infrared imaging for image-guided surgery,” in World Molecular Imaging Congress, (World Molecular Imaging Society, 2008).
  23. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
    [Crossref] [PubMed]
  24. A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
    [Crossref] [PubMed]
  25. M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
    [Crossref] [PubMed]
  26. A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
    [Crossref] [PubMed]
  27. J. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. Durkin, “Quantitative Longitudinal Measurement in a Rat Model of Controlled Burn Severity Using Spatial Frequency Domain Imaging ” in Photonics West, (SPIE, 2013).
  28. J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
    [Crossref] [PubMed]
  29. C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
    [Crossref] [PubMed]
  30. A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
    [Crossref] [PubMed]
  31. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref] [PubMed]
  32. A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
    [Crossref] [PubMed]
  33. T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
    [Crossref] [PubMed]
  34. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
    [Crossref] [PubMed]
  35. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
    [Crossref] [PubMed]
  36. G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
    [Crossref] [PubMed]
  37. J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
    [Crossref] [PubMed]
  38. D. Heimbach, L. Engrav, B. Grube, and J. Marvin, “Burn depth: a review,” World J. Surg. 16(1), 10–15 (1992).
    [Crossref] [PubMed]
  39. M. Chvapil, D. P. Speer, J. A. Owen, and T. A. Chvapil, “Identification of the depth of burn injury by collagen stainability,” Plast. Reconstr. Surg. 73(3), 438–441 (1984).
    [Crossref] [PubMed]
  40. S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53(6), 825–835 (1991).
    [Crossref] [PubMed]
  41. M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
    [Crossref] [PubMed]
  42. A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
    [Crossref] [PubMed]
  43. A. J. Singer and S. A. McClain, “A porcine burn model,” Methods Mol. Med. 78, 107–119 (2003).
    [PubMed]
  44. A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
    [Crossref] [PubMed]
  45. P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
    [Crossref] [PubMed]

2014 (1)

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

2013 (4)

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
[Crossref] [PubMed]

A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
[Crossref] [PubMed]

2012 (3)

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

2011 (5)

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011).
[Crossref] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[Crossref] [PubMed]

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).
[Crossref] [PubMed]

2010 (6)

M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
[Crossref] [PubMed]

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

2009 (7)

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
[Crossref] [PubMed]

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[Crossref] [PubMed]

2008 (2)

K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
[Crossref] [PubMed]

C. E. White and E. M. Renz, “Advances in surgical care: management of severe burn injury,” Crit. Care Med. 36(7Suppl), S318–S324 (2008).
[Crossref] [PubMed]

2007 (2)

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

2006 (3)

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” J. Burns Wounds 5, e2 (2006).
[PubMed]

2004 (1)

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

2003 (1)

A. J. Singer and S. A. McClain, “A porcine burn model,” Methods Mol. Med. 78, 107–119 (2003).
[PubMed]

2001 (3)

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[Crossref] [PubMed]

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
[Crossref] [PubMed]

1996 (1)

S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
[Crossref] [PubMed]

1992 (1)

D. Heimbach, L. Engrav, B. Grube, and J. Marvin, “Burn depth: a review,” World J. Surg. 16(1), 10–15 (1992).
[Crossref] [PubMed]

1991 (1)

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53(6), 825–835 (1991).
[Crossref] [PubMed]

1984 (1)

M. Chvapil, D. P. Speer, J. A. Owen, and T. A. Chvapil, “Identification of the depth of burn injury by collagen stainability,” Plast. Reconstr. Surg. 73(3), 438–441 (1984).
[Crossref] [PubMed]

Aguilar, G.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Aizawa, K.

K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
[Crossref] [PubMed]

Ak, M.

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

Alhan, D.

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

Alhava, E.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Arbab, M. H.

Arslan, N.

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

Ashida, H.

K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
[Crossref] [PubMed]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Aylward, S.

L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” J. Burns Wounds 5, e2 (2006).
[PubMed]

Aytekin, A. H.

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

Bernal, N.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Bezemer, R.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Bhat, S.

L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” J. Burns Wounds 5, e2 (2006).
[PubMed]

Bilevich, E. D.

S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
[Crossref] [PubMed]

Blondeel, P.

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Bogdanoff, S.

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

Broekgaarden, M.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Brown, E. R.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Byrne, P. O.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

Cardwell, N.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Cazzaniga, A. L.

S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
[Crossref] [PubMed]

Chen, A.

Chen, J. K.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Choi, B.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[Crossref] [PubMed]

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

Chvapil, M.

M. Chvapil, D. P. Speer, J. A. Owen, and T. A. Chvapil, “Identification of the depth of burn injury by collagen stainability,” Plast. Reconstr. Surg. 73(3), 438–441 (1984).
[Crossref] [PubMed]

Chvapil, T. A.

M. Chvapil, D. P. Speer, J. A. Owen, and T. A. Chvapil, “Identification of the depth of burn injury by collagen stainability,” Plast. Reconstr. Surg. 73(3), 438–441 (1984).
[Crossref] [PubMed]

Cinat, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

Clark, R. A.

C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
[Crossref] [PubMed]

Coban, Y. K.

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

Cross, K. M.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

Crouzet, C.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

Cuccia, D.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[Crossref] [PubMed]

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[Crossref] [PubMed]

Cuccia, D. J.

A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Cuccia, J. D.

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

Culjat, M. O.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Cuttle, L.

M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
[Crossref] [PubMed]

Davis, S. C.

S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
[Crossref] [PubMed]

Dell, S.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

Devgan, L.

L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” J. Burns Wounds 5, e2 (2006).
[PubMed]

Dickey, T. C.

Du, W.

C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
[Crossref] [PubMed]

Durkin, A. J.

A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
[Crossref] [PubMed]

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[Crossref] [PubMed]

Eaglstein, W. H.

S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
[Crossref] [PubMed]

Engrav, L.

D. Heimbach, L. Engrav, B. Grube, and J. Marvin, “Burn depth: a review,” World J. Surg. 16(1), 10–15 (1992).
[Crossref] [PubMed]

Erbatur, S.

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

Erickson, T. A.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Eski, M.

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
[Crossref] [PubMed]

Evans, G. R.

A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

Fidler, P.

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

Firat, C.

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

Fish, J. S.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
[Crossref] [PubMed]

Frangioni, J. V.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

Freisen, J. R.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

Gaines, C.

C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
[Crossref] [PubMed]

Ganapathy, P.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Ghasri, P.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Gioux, S.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

Gomez, M.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

Grube, B.

D. Heimbach, L. Engrav, B. Grube, and J. Marvin, “Burn depth: a review,” World J. Surg. 16(1), 10–15 (1992).
[Crossref] [PubMed]

Grundfest, W. S.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Hamdi, M.

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Härmä, M.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Heger, M.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Heimbach, D.

D. Heimbach, L. Engrav, B. Grube, and J. Marvin, “Burn depth: a review,” World J. Surg. 16(1), 10–15 (1992).
[Crossref] [PubMed]

Hoeksema, H.

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Hoyt, D. B.

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

Ilgan, S.

M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
[Crossref] [PubMed]

Isik, S.

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
[Crossref] [PubMed]

Jaskille, A. D.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[Crossref] [PubMed]

Jeng, J. C.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[Crossref] [PubMed]

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

Jordan, M. H.

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[Crossref] [PubMed]

Kaiser, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

Kelly, K. M.

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Kempf, M.

M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
[Crossref] [PubMed]

Kim, H. S.

Kimble, R. M.

M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
[Crossref] [PubMed]

Kiraly, K.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Klein, M. B.

Konecky, S. D.

Lahtinen, T.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Lee, H.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Leonardi, L.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
[Crossref] [PubMed]

Levasseur, M. A.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

Liaw, L. H.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

Liu, P. Y.

M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
[Crossref] [PubMed]

MacKay, I. R.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[Crossref] [PubMed]

Mai, T.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

Mantsch, H. H.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
[Crossref] [PubMed]

Marvin, J.

D. Heimbach, L. Engrav, B. Grube, and J. Marvin, “Burn depth: a review,” World J. Surg. 16(1), 10–15 (1992).
[Crossref] [PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Mazhar, A.

A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
[Crossref] [PubMed]

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

McClain, S. A.

A. J. Singer and S. A. McClain, “A porcine burn model,” Methods Mol. Med. 78, 107–119 (2003).
[PubMed]

McGill, D. J.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[Crossref] [PubMed]

McGrouther, D. A.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[Crossref] [PubMed]

Mertz, P. M.

S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
[Crossref] [PubMed]

Monstrey, S.

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Mourad, P. D.

Nanney, L.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Nasabzadeh, T. J.

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

Nelson, J. S.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

Nguyen, J. Q.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

Nisanci, M.

M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
[Crossref] [PubMed]

Nouvong, A.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011).
[Crossref] [PubMed]

Obara, M.

K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
[Crossref] [PubMed]

Owen, J. A.

M. Chvapil, D. P. Speer, J. A. Owen, and T. A. Chvapil, “Identification of the depth of burn injury by collagen stainability,” Plast. Reconstr. Surg. 73(3), 438–441 (1984).
[Crossref] [PubMed]

Ozer, F.

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

Pape, S. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

Papp, A.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Patel, S.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Payette, J. R.

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
[Crossref] [PubMed]

Perry, M. E.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[Crossref] [PubMed]

Pharaon, M. R.

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

Pilon, L.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011).
[Crossref] [PubMed]

Pollins, A.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Ponticorvo, A.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
[Crossref] [PubMed]

Poranki, D.

C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
[Crossref] [PubMed]

Qin, Y.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Ramella-Roman, J. C.

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[Crossref] [PubMed]

Renz, E. M.

C. E. White and E. M. Renz, “Advances in surgical care: management of severe burn injury,” Crit. Care Med. 36(7Suppl), S318–S324 (2008).
[Crossref] [PubMed]

Rimler, J.

Riola, K.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

Roberts, A. H.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[Crossref] [PubMed]

Rosenthal, D. S.

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

Saager, R. B.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Sahin, I.

M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
[Crossref] [PubMed]

Saitoh, D.

K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
[Crossref] [PubMed]

Samdanci, E.

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

Sato, S.

K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
[Crossref] [PubMed]

Schattka, B. J.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

Scholz, T.

A. Ponticorvo, E. Taydas, A. Mazhar, T. Scholz, H. S. Kim, J. Rimler, G. R. Evans, D. J. Cuccia, and A. J. Durkin, “Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging,” Biomed. Opt. Express 4(2), 298–306 (2013).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

Schomacker, K.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011).
[Crossref] [PubMed]

Schotland, J. C.

Senturk, T.

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

Sexton, K.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Sharif, S. A.

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

Shupp, J. W.

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[Crossref] [PubMed]

Singer, A. J.

A. J. Singer and S. A. McClain, “A porcine burn model,” Methods Mol. Med. 78, 107–119 (2003).
[PubMed]

Singh, R. S.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Skouras, C. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

Sørensen, K.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[Crossref] [PubMed]

Sowa, M. G.

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
[Crossref] [PubMed]

Speer, D. P.

M. Chvapil, D. P. Speer, J. A. Owen, and T. A. Chvapil, “Identification of the depth of burn injury by collagen stainability,” Plast. Reconstr. Surg. 73(3), 438–441 (1984).
[Crossref] [PubMed]

Spence, R. J.

L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” J. Burns Wounds 5, e2 (2006).
[PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Suen, J. Y.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Taggart, I.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[Crossref] [PubMed]

Tamminedi, T.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Taydas, E.

Taylor, Z. D.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Tewari, P.

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

Thomsen, S.

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53(6), 825–835 (1991).
[Crossref] [PubMed]

Tondu, T.

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Tromberg, B. J.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Tunnell, J. W.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Turtay, M. G.

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

Tyler, M. P.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[Crossref] [PubMed]

Uchitel, D.

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

Uusaro, A.

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

Van De Sijpe, K.

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Van Drooge, A. M.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Van Dyke, M.

C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
[Crossref] [PubMed]

Van Landuyt, K.

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

Vetter, T. S.

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Wang, L. V.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Wang, X. Q.

M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
[Crossref] [PubMed]

Watson, S. B.

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[Crossref] [PubMed]

Watts, A. M.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[Crossref] [PubMed]

White, C. E.

C. E. White and E. M. Renz, “Advances in surgical care: management of severe burn injury,” Crit. Care Med. 36(7Suppl), S318–S324 (2008).
[Crossref] [PubMed]

Winebrenner, D. P.

Wolkerstorfer, A.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Yadegar, J.

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Yafi, A.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Yang, B.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Yang, O.

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[Crossref] [PubMed]

Yudovsky, D.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011).
[Crossref] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

G. Aguilar, B. Choi, M. Broekgaarden, O. Yang, B. Yang, P. Ghasri, J. K. Chen, R. Bezemer, J. S. Nelson, A. M. Van Drooge, A. Wolkerstorfer, K. M. Kelly, and M. Heger, “An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains,” Ann. Biomed. Eng. 40(2), 486–506 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Burns (13)

C. Gaines, D. Poranki, W. Du, R. A. Clark, and M. Van Dyke, “Development of a porcine deep partial thickness burn model,” Burns 39(2), 311–319 (2013).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns 27(3), 241–249 (2001).
[Crossref] [PubMed]

D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007).
[Crossref] [PubMed]

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001).
[Crossref] [PubMed]

H. Hoeksema, K. Van De Sijpe, T. Tondu, M. Hamdi, K. Van Landuyt, P. Blondeel, and S. Monstrey, “Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn,” Burns 35(1), 36–45 (2009).
[Crossref] [PubMed]

M. Eski, F. Ozer, C. Firat, D. Alhan, N. Arslan, T. Senturk, and S. Işik, “Cerium nitrate treatment prevents progressive tissue necrosis in the zone of stasis following burn,” Burns 38(2), 283–289 (2012).
[Crossref] [PubMed]

C. Firat, E. Samdanci, S. Erbatur, A. H. Aytekin, M. Ak, M. G. Turtay, and Y. K. Coban, “β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: An experimental study in rats,” Burns 39(1), 105–112 (2013).
[Crossref] [PubMed]

M. Nisanci, M. Eski, I. Sahin, S. Ilgan, and S. Isik, “Saving the zone of stasis in burns with activated protein C: an experimental study in rats,” Burns 36(3), 397–402 (2010).
[Crossref] [PubMed]

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns 37(3), 377–386 (2011).
[Crossref] [PubMed]

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001).
[Crossref] [PubMed]

M. Kempf, L. Cuttle, P. Y. Liu, X. Q. Wang, and R. M. Kimble, “Important improvements to porcine skin burn models, in search of the perfect burn,” Burns 35(3), 454–455 (2009).
[Crossref] [PubMed]

A. Papp, K. Kiraly, M. Härmä, T. Lahtinen, A. Uusaro, and E. Alhava, “The progression of burn depth in experimental burns: a histological and methodological study,” Burns 30(7), 684–690 (2004).
[Crossref] [PubMed]

P. Ganapathy, T. Tamminedi, Y. Qin, L. Nanney, N. Cardwell, A. Pollins, K. Sexton, and J. Yadegar, “Dual-imaging system for burn depth diagnosis,” Burns 40(1), 67–81 (2014).
[Crossref] [PubMed]

Crit. Care Med. (1)

C. E. White and E. M. Renz, “Advances in surgical care: management of severe burn injury,” Crit. Care Med. 36(7Suppl), S318–S324 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (10)

K. Aizawa, S. Sato, D. Saitoh, H. Ashida, and M. Obara, “Photoacoustic monitoring of burn healing process in rats,” J. Biomed. Opt. 13(6), 064020 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry,” J. Biomed. Opt. 16(2), 026009 (2011).
[Crossref] [PubMed]

J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, “Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity,” J. Biomed. Opt. 18(6), 066010 (2013).
[Crossref] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14(3), 034045 (2009).
[Crossref] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[Crossref] [PubMed]

J. Burn Care Rehabil. (1)

S. C. Davis, P. M. Mertz, E. D. Bilevich, A. L. Cazzaniga, and W. H. Eaglstein, “Early debridement of second-degree burn wounds enhances the rate of epithelization--an animal model to evaluate burn wound therapies,” J. Burn Care Rehabil. 17(6), 558–561 (1996).
[Crossref] [PubMed]

J. Burn Care Res. (3)

K. M. Cross, L. Leonardi, M. Gomez, J. R. Freisen, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Noninvasive measurement of edema in partial thickness burn wounds,” J. Burn Care Res. 30(5), 807–817 (2009).
[Crossref] [PubMed]

A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010).
[Crossref] [PubMed]

J. W. Shupp, T. J. Nasabzadeh, D. S. Rosenthal, M. H. Jordan, P. Fidler, and J. C. Jeng, “A review of the local pathophysiologic bases of burn wound progression,” J. Burn Care Res. 31(6), 849–873 (2010).
[Crossref] [PubMed]

J. Burns Wounds (1)

L. Devgan, S. Bhat, S. Aylward, and R. J. Spence, “Modalities for the assessment of burn wound depth,” J. Burns Wounds 5, e2 (2006).
[PubMed]

Lasers Surg. Med. (1)

A. Mazhar, S. A. Sharif, J. D. Cuccia, J. S. Nelson, K. M. Kelly, and A. J. Durkin, “Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study,” Lasers Surg. Med. 44(8), 611–621 (2012).
[Crossref] [PubMed]

Methods Mol. Med. (1)

A. J. Singer and S. A. McClain, “A porcine burn model,” Methods Mol. Med. 78, 107–119 (2003).
[PubMed]

Opt. Express (1)

Photochem. Photobiol. (1)

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Photochem. Photobiol. 53(6), 825–835 (1991).
[Crossref] [PubMed]

Plast. Reconstr. Surg. (3)

M. Chvapil, D. P. Speer, J. A. Owen, and T. A. Chvapil, “Identification of the depth of burn injury by collagen stainability,” Plast. Reconstr. Surg. 73(3), 438–441 (1984).
[Crossref] [PubMed]

M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg. 126(6), 1924–1935 (2010).
[Crossref] [PubMed]

A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg. 127(1), 117–130 (2011).
[Crossref] [PubMed]

Stud. Health Technol. Inform. (1)

J. Y. Suen, P. Tewari, Z. D. Taylor, W. S. Grundfest, H. Lee, E. R. Brown, M. O. Culjat, and R. S. Singh, “Towards medical terahertz sensing of skin hydration,” Stud. Health Technol. Inform. 142, 364–368 (2009).
[PubMed]

World J. Surg. (1)

D. Heimbach, L. Engrav, B. Grube, and J. Marvin, “Burn depth: a review,” World J. Surg. 16(1), 10–15 (1992).
[Crossref] [PubMed]

Wound Repair Regen. (1)

K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007).
[Crossref] [PubMed]

Other (3)

J. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. Durkin, “Quantitative Longitudinal Measurement in a Rat Model of Controlled Burn Severity Using Spatial Frequency Domain Imaging ” in Photonics West, (SPIE, 2013).

A. J. Durkin, J. G. Kim, and D. J. Cuccia, “Quantitative Near Infrared Imaging of Skin Flaps,” in BioMed 2008, (American Society of Mechanical Engineers, 2008).

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Spatially-modulated near-infrared imaging for image-guided surgery,” in World Molecular Imaging Congress, (World Molecular Imaging Society, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram illustrating the data collection geometry used in the experiment.

Fig. 2
Fig. 2

Methodology of burn wound creation. a) Top panel shows the dorsum of a pig, with outline for wound spaces delineated. Serrated line shows the spine of the animal. Bottom panels show custom made device made to handle 3cm brass blocks. Spring-loaded device ensures consistent applied pressure. b) Cartoon schematic of the animal highlighting the 3 cm wounds created. For every wound, biopsies (dashed circles) were taken just after burn wound creation (hour 1) as well as hours 24, 48, and 72 post-burn. Solid black lines indicate approximate histological section.

Fig. 3
Fig. 3

a) Color images of representative burn regions at 24 hours. A prominent red ring representing the zone of hyperemia clearly delineates the edge of the wound bed and the initial 1 hour biopsy punch can be seen in the upper left corner of each wound. b) Trichrome images of burns 24 hours post-injury for 10 second (superficial-partial thickness), 20 second (deep partial thickness) and 40 second (full thickness) burns. Solid black lines indicate collagen coagulation depth, while dashed black lines indicate full thickness of the skin sample. Arrows indicate fully epithelialized hair follicles in superficial burns, while hair follicles in deep partial and full thickness burns are damaged with the epithelium sloughed off. c) Quantification of collagen coagulation depth reveals that contact time correlates well with percent dermal collagen coagulated as determined from histology at 24 hours post injury.

Fig. 4
Fig. 4

Box and whisker plot of average collagen coagulation for three distinct burn categories. Time points at which there were statistically significant differences between groups are indicated with an asterisk.

Fig. 5
Fig. 5

a) Representative images of blood flow for the three burn categories at hour 1 and hour 72. b) Box and whisker plot of average blood flow for different burn categories as determined using laser speckle imaging. Time points with statistically significant differences between groups are indicated with an asterisk.

Fig. 6
Fig. 6

a) Images of stO2 for a superficial partial thickness burn and a full thickness burn at hour 1 and hour 72. b) Box and whisker plot of average stO2 values for different burn categories. Time points with statistically significant differences between groups are indicated with an asterisk.

Fig. 7
Fig. 7

a) Representative images of the reduced scattering coefficient for the three burn categories at hour 1 and hour 72. b) Box and whisker plot of average reduced scattering coefficient values for different burn categories. Time points with statistically significant differences between groups are shown with an asterisk.

Tables (1)

Tables Icon

Table 1 Summary of Results

Metrics