Abstract

An Optical Projection Tomography (OPT) system was developed and optimized to image 3D tissue engineered products based in hydrogels. We develop pre-reconstruction algorithms to get the best result from the reconstruction procedure, which include correction of the illumination and determination of sample center of rotation (CoR). Existing methods for CoR determination based on the detection of the maximum variance of reconstructed slices failed, so we develop a new CoR search method based in the detection of the variance sharpest local maximum. We show the capabilities of the system to give quantitative information of different types of hydrogels that may be useful in its characterization.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography

Ling Wang, Mingen Xu, LieLie Zhang, QingQing Zhou, and Li Luo
Biomed. Opt. Express 7(3) 894-910 (2016)

Optical projection tomography for rapid whole mouse brain imaging

David Nguyen, Paul J. Marchand, Arielle L. Planchette, Julia Nilsson, Miguel Sison, Jérôme Extermann, Antonio Lopez, Marcin Sylwestrzak, Jessica Sordet-Dessimoz, Anja Schmidt-Christensen, Dan Holmberg, Dimitri Van De Ville, and Theo Lasser
Biomed. Opt. Express 8(12) 5637-5650 (2017)

Parametric estimation of 3D tubular structures for diffuse optical tomography

Fridrik Larusson, Pamela G. Anderson, Elizabeth Rosenberg, Misha E. Kilmer, Angelo Sassaroli, Sergio Fantini, and Eric L. Miller
Biomed. Opt. Express 4(2) 271-286 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
    [Crossref] [PubMed]
  2. U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt. 50(4), 392–398 (2011).
    [Crossref] [PubMed]
  3. A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
    [Crossref] [PubMed]
  4. M. L. Mather, S. P. Morgan, and J. A. Crowe, “Meeting the needs of monitoring in tissue engineering,” Regen. Med. 2(2), 145–160 (2007).
    [Crossref] [PubMed]
  5. M. C. Gibbons, M. A. Foley, and K. O. Cardinal, “Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models,” Tissue Eng. Part B Rev. 19(1), 14–30 (2013).
    [Crossref] [PubMed]
  6. M. A. Haidekker, “Optical transillumination tomography with tolerance against refraction mismatch,” Comput. Methods Programs Biomed. 80(3), 225–235 (2005).
    [Crossref] [PubMed]
  7. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
    [Crossref] [PubMed]
  8. D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
    [Crossref] [PubMed]
  9. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
    [Crossref] [PubMed]
  10. U. J. Birk, M. Rieckher, N. Konstantinides, A. Darrell, A. Sarasa-Renedo, H. Meyer, N. Tavernarakis, and J. Ripoll, “Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography,” Biomed. Opt. Express 1(1), 87–96 (2010).
    [Crossref] [PubMed]
  11. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Elsevier, 2007) Chap. 4.9.6.

2013 (3)

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

M. C. Gibbons, M. A. Foley, and K. O. Cardinal, “Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models,” Tissue Eng. Part B Rev. 19(1), 14–30 (2013).
[Crossref] [PubMed]

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2007 (1)

M. L. Mather, S. P. Morgan, and J. A. Crowe, “Meeting the needs of monitoring in tissue engineering,” Regen. Med. 2(2), 145–160 (2007).
[Crossref] [PubMed]

2005 (2)

M. A. Haidekker, “Optical transillumination tomography with tolerance against refraction mismatch,” Comput. Methods Programs Biomed. 80(3), 225–235 (2005).
[Crossref] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[Crossref] [PubMed]

2003 (1)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
[Crossref] [PubMed]

2002 (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Anastasio, M. A.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Appel, A. A.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Birk, U. J.

Brey, E. M.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Cardinal, K. O.

M. C. Gibbons, M. A. Foley, and K. O. Cardinal, “Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models,” Tissue Eng. Part B Rev. 19(1), 14–30 (2013).
[Crossref] [PubMed]

Crowe, J. A.

M. L. Mather, S. P. Morgan, and J. A. Crowe, “Meeting the needs of monitoring in tissue engineering,” Regen. Med. 2(2), 145–160 (2007).
[Crossref] [PubMed]

Darrell, A.

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Dong, D.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Foley, M. A.

M. C. Gibbons, M. A. Foley, and K. O. Cardinal, “Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models,” Tissue Eng. Part B Rev. 19(1), 14–30 (2013).
[Crossref] [PubMed]

Gibbons, M. C.

M. C. Gibbons, M. A. Foley, and K. O. Cardinal, “Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models,” Tissue Eng. Part B Rev. 19(1), 14–30 (2013).
[Crossref] [PubMed]

Haidekker, M. A.

M. A. Haidekker, “Optical transillumination tomography with tolerance against refraction mismatch,” Comput. Methods Programs Biomed. 80(3), 225–235 (2005).
[Crossref] [PubMed]

Hecksher-Sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Henkelman, R. M.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[Crossref] [PubMed]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Konstantinides, N.

Kumar, V.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Larson, J. C.

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Mather, M. L.

M. L. Mather, S. P. Morgan, and J. A. Crowe, “Meeting the needs of monitoring in tissue engineering,” Regen. Med. 2(2), 145–160 (2007).
[Crossref] [PubMed]

Meyer, H.

Morgan, S. P.

M. L. Mather, S. P. Morgan, and J. A. Crowe, “Meeting the needs of monitoring in tissue engineering,” Regen. Med. 2(2), 145–160 (2007).
[Crossref] [PubMed]

Oehler, S.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Qin, C.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Rieckher, M.

Ripoll, J.

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Sarasa-Renedo, A.

Savakis, C.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Sharpe, J.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[Crossref] [PubMed]

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
[Crossref] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Sled, J. G.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[Crossref] [PubMed]

Stein, J. V.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Tavernarakis, N.

Tian, J.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Walls, J. R.

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[Crossref] [PubMed]

Zhu, S.

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomaterials (1)

A. A. Appel, M. A. Anastasio, J. C. Larson, and E. M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28), 6615–6630 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Comput. Methods Programs Biomed. (1)

M. A. Haidekker, “Optical transillumination tomography with tolerance against refraction mismatch,” Comput. Methods Programs Biomed. 80(3), 225–235 (2005).
[Crossref] [PubMed]

IEEE J. Biomed. Health Inform. (1)

D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013).
[Crossref] [PubMed]

J. Anat. (1)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005).
[Crossref] [PubMed]

Regen. Med. (1)

M. L. Mather, S. P. Morgan, and J. A. Crowe, “Meeting the needs of monitoring in tissue engineering,” Regen. Med. 2(2), 145–160 (2007).
[Crossref] [PubMed]

Science (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Tissue Eng. Part B Rev. (1)

M. C. Gibbons, M. A. Foley, and K. O. Cardinal, “Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models,” Tissue Eng. Part B Rev. 19(1), 14–30 (2013).
[Crossref] [PubMed]

Other (1)

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Elsevier, 2007) Chap. 4.9.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the OPT setup: the samples are placed and rotated in the rotation stage (S) which is placed in refractive index matching bath (B). Bright-field illumination is done with a white light (LED1) and telecentric lens (L). Fluorescence illumination is done with a specific wavelength (LED2) collimated with a lens with diffuser (LD). The light detection system consists of an objective lens (Ob), a pinhole (P), a tube lens (TL) and a sCMOS camera.

Fig. 2
Fig. 2

OPT projections of (a) GG with 1.1% of spermine (SPM) ionic crosslinker with polystyrene particles before filtering, (b) same image after homomorphic filtering, and (c) GG with 2% of ionic crosslinker after filtering.

Fig. 3
Fig. 3

Normalized variance for different offset values for the first and last slice (slice i and slice f, respectively) of (a) GG with 1.1% of spermine (SPM) ionic crosslinker, (b) GG 1.1% ionic was combined with 1% v/v black polystyrene particles. CoRi and CoRf are identified by the black exe and point, respectively.

Fig. 4
Fig. 4

Offset for 32 dCoRn (red dots) and fCoR values (blue line) for (a) GG with 1.1% of spermine (SPM) ionic crosslinker, (b) GG 1.1% ionic was combined with 1% v/v black polystyrene particles.

Fig. 5
Fig. 5

First slice reconstruction of GG with 1.1% of spermine (SPM) ionic crosslinker considering the CoR as (a) the maximum value of variance, and (b) calculated by the center of rotation function fCoR.

Fig. 6
Fig. 6

OPT reconstruction of (a) GG with 2% of ionic crosslinker, (b) GG with 1.1% of spermine (SPM) ionic crosslinker, and (c) GG with 1.1% of spermine (SPM) ionic crosslinker with polystyrene particles.

Tables (2)

Tables Icon

Table 1 Normalized mean square error (NMSE) of the fit between dCoRn and fCoR values.

Tables Icon

Table 2 Kurtosis and entropy for the projections and reconstructions of GG with 2% of ionic crosslinker, GG with 1.1% of SPM ionic crosslinker, and GG with 0.6% of SPM ionic crosslinker (mean value ± std).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Co R n = max N 4 c 3N 4 { V(c) 1 2 (V(c1)+V(c+1)) },
V(c)= y=0 N1 x=0 N1 ( f c (x,y) f ¯ c ) 2 N 2 ,
fCoR(n)= dCo R f dCo R i N n+dCo R i ,n[i,f]

Metrics