Abstract

Hypertrophic scars (HTS) are a pathologic reaction of the skin and soft tissue to burn or other traumatic injury. Scar tissue can cause patients serious functional and cosmetic issues. Scar management strategies, specifically scar assessment techniques, are vital to improve clinical outcome. To date, no entirely objective method for scar assessment has been embraced by the medical community. In this study, we introduce for the first time, a novel polarized multispectral imaging system combining out-of-plane Stokes polarimetry and Spatial Frequency Domain Imaging (SFDI). This imaging system enables us to assess the pathophysiology (hemoglobin, blood oxygenation, water, and melanin) and structural features (cellularity and roughness) of HTS. To apply the proposed technique in an in vivo experiment, dermal wounds were created in a porcine model and allowed to form into scars. The developed scars were then measured at various time points using the imaging system. Results showed a good agreement with clinical Vancouver Scar Scale assessment and histological examinations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI)

Adrien Ponticorvo, David M. Burmeister, Bruce Yang, Bernard Choi, Robert J. Christy, and Anthony J. Durkin
Biomed. Opt. Express 5(10) 3467-3481 (2014)

Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha
Biomed. Opt. Express 4(5) 680-695 (2013)

Non-invasive terahertz imaging of tissue water content for flap viability assessment

Neha Bajwa, Joshua Au, Reza Jarrahy, Shijun Sung, Michael C. Fishbein, David Riopelle, Daniel B. Ennis, Tara Aghaloo, Maie A. St. John, Warren S. Grundfest, and Zachary D. Taylor
Biomed. Opt. Express 8(1) 460-474 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Linares, “From wound to scar,” Burns 22(5), 339–352 (1996).
    [Crossref] [PubMed]
  2. M. A. Hardy, “The biology of scar formation,” Phys. Ther. 69(12), 1014–1024 (1989).
    [PubMed]
  3. D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-Katzer, “Hypertrophic scars and keloids - A review of their pathophysiology, risk factors, and therapeutic management,” Dermatol. Surg. 35(2), 171–181 (2009).
    [Crossref] [PubMed]
  4. J. E. Dunphy and D. S. Jackson, “Practical applications of experimental studies in the care of te primarily closed wound,” Am. J. Surg. 104(2), 273–282 (1962).
    [Crossref] [PubMed]
  5. K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
    [Crossref] [PubMed]
  6. R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
    [Crossref] [PubMed]
  7. T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
    [Crossref] [PubMed]
  8. M. J. Baryza and G. A. Baryza, “The Vancouver scar scale: an administration tool and its interrater reliability,” J. Burn Care Rehabil. 16(5), 535–538 (1995).
    [Crossref] [PubMed]
  9. R. Fearmonti, J. Bond, D. Erdmann, and H. Levinson, “A review of scar scales and scar measuring devices,” Eplasty 10, e43 (2010).
    [PubMed]
  10. R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
    [Crossref] [PubMed]
  11. H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
    [Crossref] [PubMed]
  12. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
    [Crossref] [PubMed]
  13. M. Wolman and T. Gillman, “A polarized light study of collagen in dermal wound healing,” Br. J. Exp. Pathol. 53(2), 85–89 (1972).
    [PubMed]
  14. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
    [Crossref] [PubMed]
  15. A. G. Ferdman and I. V. Yannas, “Scattering of light from histologic sections: a new method for the analysis of connective tissue,” J. Invest. Dermatol. 100(5), 710–716 (1993).
    [Crossref] [PubMed]
  16. V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
    [Crossref] [PubMed]
  17. G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
    [Crossref] [PubMed]
  18. B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
    [Crossref] [PubMed]
  19. X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
    [Crossref] [PubMed]
  20. X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
    [PubMed]
  21. N. Kurokawa, K. Ueda, and M. Tsuji, “Study of microvascular structure in keloid and hypertrophic scars: density of microvessels and the efficacy of three-dimensional vascular imaging,” J. Plast. Surg. Hand Surg. 44(6), 272–277 (2010).
    [Crossref] [PubMed]
  22. I. S. Kaartinen, P. O. Välisuo, J. T. Alander, and H. O. Kuokkanen, “Objective scar assessment--a new method using standardized digital imaging and spectral modelling,” Burns 37(1), 74–81 (2011).
    [Crossref] [PubMed]
  23. I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
    [Crossref]
  24. L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
    [Crossref] [PubMed]
  25. R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
    [Crossref] [PubMed]
  26. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
    [Crossref] [PubMed]
  27. M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
    [Crossref] [PubMed]
  28. E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
    [Crossref] [PubMed]
  29. S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
    [Crossref] [PubMed]
  30. C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
    [Crossref] [PubMed]
  31. P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
    [Crossref] [PubMed]
  32. J. C. Ramella-Roman, B. Boulbry, and T. A. Germer, “Hemispherical imaging of skin with polarized light,” in Saratov Fall Meeting, Optical Technologies in Biophysics and Medicine VIII, Valery V. Tuchin, Ed., Proc. SPIE 6535, 65350U (2006).
  33. H. M. Merklinger, Focusing the View Camera (Belford, Nova Scotia: Seaboard Printing Ltd. 1996).
  34. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [Crossref] [PubMed]
  35. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105(10), 102028 (2009).
    [Crossref]
  36. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
    [Crossref]
  37. X. Ma, J. Q. Lu, H. Ding, and X. H. Hu, “Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm,” Opt. Lett. 30(4), 412–414 (2005).
    [Crossref] [PubMed]
  38. T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
    [Crossref] [PubMed]
  39. R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
    [Crossref] [PubMed]
  40. A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
    [Crossref] [PubMed]
  41. B. Boulbry, J. C. Ramella-Roman, and T. A. Germer, “Self-consistent calibration of a spectro-ellipsometer using a Fresnel rhomb as a reference sample,” Appl. Opt. 46(35), 8533–8541 (2007).
    [Crossref] [PubMed]
  42. T. A. Germer and C. C. Asmail, “Bidirectional ellipsometry and its application to the characterization of surfaces,” Polarization: Measurement, Analysis, and Remote Sensing, Proc. SPIE 3121, 173–182 (1997).
    [Crossref]
  43. T. A. Germer, “SCATMECH: Polarized Light Scattering C++ Class Library,” (2008), http://physics.nist.gov/scatmech .
  44. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
    [Crossref] [PubMed]
  45. M. L. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
    [Crossref] [PubMed]
  46. R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
    [Crossref] [PubMed]
  47. Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
    [Crossref] [PubMed]
  48. N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
    [Crossref] [PubMed]
  49. Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
    [Crossref] [PubMed]
  50. K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
    [Crossref] [PubMed]
  51. T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
    [PubMed]
  52. D. F. Sloan, R. D. Brown, C. H. Wells, and J. G. Hilton, “Tissue gases in human hypertrophic burn scars,” Plast. Reconstr. Surg. 61(3), 431–436 (1978).
    [Crossref] [PubMed]
  53. S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
    [Crossref] [PubMed]
  54. M. L. Stoner and F. M. Wood, “The treatment of hypopigmented lesions with cultured epithelial autograft,” J. Burn Care Rehabil. 21(1), 50–54 (2000).
    [Crossref] [PubMed]
  55. T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).
  56. P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
    [Crossref] [PubMed]
  57. E. E. Tredget, B. Nedelec, P. G. Scott, and A. Ghahary, “Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy,” Surg. Clin. North Am. 77(3), 701–730 (1997).
    [Crossref] [PubMed]
  58. N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014), doi:.
    [Crossref] [PubMed]
  59. A. C. Vivas, J. C. Tang, A. D. Maderal, and M. H. Viera, “Hypertrophic scars and keloids, part 1: convensional treatments,” Cosmet. Dermatol. 25(7), 309–316 (2012).

2014 (4)

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014), doi:.
[Crossref] [PubMed]

2013 (2)

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

2012 (2)

A. C. Vivas, J. C. Tang, A. D. Maderal, and M. H. Viera, “Hypertrophic scars and keloids, part 1: convensional treatments,” Cosmet. Dermatol. 25(7), 309–316 (2012).

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

2011 (6)

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
[Crossref] [PubMed]

I. S. Kaartinen, P. O. Välisuo, J. T. Alander, and H. O. Kuokkanen, “Objective scar assessment--a new method using standardized digital imaging and spectral modelling,” Burns 37(1), 74–81 (2011).
[Crossref] [PubMed]

I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
[Crossref]

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
[Crossref] [PubMed]

2010 (4)

R. Fearmonti, J. Bond, D. Erdmann, and H. Levinson, “A review of scar scales and scar measuring devices,” Eplasty 10, e43 (2010).
[PubMed]

N. Kurokawa, K. Ueda, and M. Tsuji, “Study of microvascular structure in keloid and hypertrophic scars: density of microvessels and the efficacy of three-dimensional vascular imaging,” J. Plast. Surg. Hand Surg. 44(6), 272–277 (2010).
[Crossref] [PubMed]

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

2009 (5)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105(10), 102028 (2009).
[Crossref]

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-Katzer, “Hypertrophic scars and keloids - A review of their pathophysiology, risk factors, and therapeutic management,” Dermatol. Surg. 35(2), 171–181 (2009).
[Crossref] [PubMed]

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

2008 (4)

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
[Crossref] [PubMed]

M. L. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

B. Boulbry, J. C. Ramella-Roman, and T. A. Germer, “Self-consistent calibration of a spectro-ellipsometer using a Fresnel rhomb as a reference sample,” Appl. Opt. 46(35), 8533–8541 (2007).
[Crossref] [PubMed]

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

2006 (2)

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

2005 (2)

X. Ma, J. Q. Lu, H. Ding, and X. H. Hu, “Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm,” Opt. Lett. 30(4), 412–414 (2005).
[Crossref] [PubMed]

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

2004 (4)

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

2003 (2)

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

2002 (1)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

2000 (2)

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

M. L. Stoner and F. M. Wood, “The treatment of hypopigmented lesions with cultured epithelial autograft,” J. Burn Care Rehabil. 21(1), 50–54 (2000).
[Crossref] [PubMed]

1999 (1)

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

1997 (3)

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

E. E. Tredget, B. Nedelec, P. G. Scott, and A. Ghahary, “Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy,” Surg. Clin. North Am. 77(3), 701–730 (1997).
[Crossref] [PubMed]

T. A. Germer and C. C. Asmail, “Bidirectional ellipsometry and its application to the characterization of surfaces,” Polarization: Measurement, Analysis, and Remote Sensing, Proc. SPIE 3121, 173–182 (1997).
[Crossref]

1996 (1)

H. A. Linares, “From wound to scar,” Burns 22(5), 339–352 (1996).
[Crossref] [PubMed]

1995 (1)

M. J. Baryza and G. A. Baryza, “The Vancouver scar scale: an administration tool and its interrater reliability,” J. Burn Care Rehabil. 16(5), 535–538 (1995).
[Crossref] [PubMed]

1993 (1)

A. G. Ferdman and I. V. Yannas, “Scattering of light from histologic sections: a new method for the analysis of connective tissue,” J. Invest. Dermatol. 100(5), 710–716 (1993).
[Crossref] [PubMed]

1990 (1)

T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
[Crossref] [PubMed]

1989 (1)

M. A. Hardy, “The biology of scar formation,” Phys. Ther. 69(12), 1014–1024 (1989).
[PubMed]

1978 (1)

D. F. Sloan, R. D. Brown, C. H. Wells, and J. G. Hilton, “Tissue gases in human hypertrophic burn scars,” Plast. Reconstr. Surg. 61(3), 431–436 (1978).
[Crossref] [PubMed]

1972 (1)

M. Wolman and T. Gillman, “A polarized light study of collagen in dermal wound healing,” Br. J. Exp. Pathol. 53(2), 85–89 (1972).
[PubMed]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

1962 (1)

J. E. Dunphy and D. S. Jackson, “Practical applications of experimental studies in the care of te primarily closed wound,” Am. J. Surg. 104(2), 273–282 (1962).
[Crossref] [PubMed]

Aarabi, S.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Alander, J. T.

I. S. Kaartinen, P. O. Välisuo, J. T. Alander, and H. O. Kuokkanen, “Objective scar assessment--a new method using standardized digital imaging and spectral modelling,” Burns 37(1), 74–81 (2011).
[Crossref] [PubMed]

I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
[Crossref]

Ando, T.

S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
[Crossref] [PubMed]

Armendariz, R. T.

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Asmail, C. C.

T. A. Germer and C. C. Asmail, “Bidirectional ellipsometry and its application to the characterization of surfaces,” Polarization: Measurement, Analysis, and Remote Sensing, Proc. SPIE 3121, 173–182 (1997).
[Crossref]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Barth, R. J.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

Baryza, G. A.

M. J. Baryza and G. A. Baryza, “The Vancouver scar scale: an administration tool and its interrater reliability,” J. Burn Care Rehabil. 16(5), 535–538 (1995).
[Crossref] [PubMed]

Baryza, M. J.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

M. J. Baryza and G. A. Baryza, “The Vancouver scar scale: an administration tool and its interrater reliability,” J. Burn Care Rehabil. 16(5), 535–538 (1995).
[Crossref] [PubMed]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Bhatt, K. A.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Bishop, S.

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

Blakeney, P.

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

Bloemen, M. C.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
[Crossref] [PubMed]

Bochko, V.

I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
[Crossref]

Bodenschatz, N.

N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014), doi:.
[Crossref] [PubMed]

Bodnar, R.

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

Boisvert, M. E.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

Bombaro, K. M.

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

Bond, J.

R. Fearmonti, J. Bond, D. Erdmann, and H. Levinson, “A review of scar scales and scar measuring devices,” Eplasty 10, e43 (2010).
[PubMed]

Botman, Y. A.

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

Boulbry, B.

Brandes, A.

N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014), doi:.
[Crossref] [PubMed]

Bray, R.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

Bray, R. C.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Brown, J. J.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

Brown, R. D.

D. F. Sloan, R. D. Brown, C. H. Wells, and J. G. Hilton, “Tissue gases in human hypertrophic burn scars,” Plast. Reconstr. Surg. 61(3), 431–436 (1978).
[Crossref] [PubMed]

Cain, V.

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Carr, J. A.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Carrougher, G. J.

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

Cense, B.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Chang, E. I.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Chen, G.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Chen, J.

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Chen, R.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Chen, Y. C.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Cole, J. K.

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

Costa, B.

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Costa, B. A.

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

Courtemanche, D. J.

T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
[Crossref] [PubMed]

Couture, O. P.

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

Cuccia, D. J.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
[Crossref] [PubMed]

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105(10), 102028 (2009).
[Crossref]

Da Costa, V.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

de Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Deubner, H.

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Dewey, W. S.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Ding, H.

Dougherty, M. E.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Draaijers, L. J.

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

Dunphy, J. E.

J. E. Dunphy and D. S. Jackson, “Practical applications of experimental studies in the care of te primarily closed wound,” Am. J. Surg. 104(2), 273–282 (1962).
[Crossref] [PubMed]

Durkin, A. J.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
[Crossref] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105(10), 102028 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

Emerson, D. A.

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

Engel, R.

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

Engrav, L. H.

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Erdmann, D.

R. Fearmonti, J. Bond, D. Erdmann, and H. Levinson, “A review of scar scales and scar measuring devices,” Eplasty 10, e43 (2010).
[PubMed]

Faucher, L.

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

Fearmonti, R.

R. Fearmonti, J. Bond, D. Erdmann, and H. Levinson, “A review of scar scales and scar measuring devices,” Eplasty 10, e43 (2010).
[PubMed]

Ferdman, A. G.

A. G. Ferdman and I. V. Yannas, “Scattering of light from histologic sections: a new method for the analysis of connective tissue,” J. Invest. Dermatol. 100(5), 710–716 (1993).
[Crossref] [PubMed]

Ferreira, L. M.

M. L. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

Flanagan, K. E.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

Forbes-Duchart, L.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Forrester, K.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

Forrester, K. R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Frank, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Franzen, B. J.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Germer, T. A.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

B. Boulbry, J. C. Ramella-Roman, and T. A. Germer, “Self-consistent calibration of a spectro-ellipsometer using a Fresnel rhomb as a reference sample,” Appl. Opt. 46(35), 8533–8541 (2007).
[Crossref] [PubMed]

T. A. Germer and C. C. Asmail, “Bidirectional ellipsometry and its application to the characterization of surfaces,” Polarization: Measurement, Analysis, and Remote Sensing, Proc. SPIE 3121, 173–182 (1997).
[Crossref]

Ghahary, A.

E. E. Tredget, B. Nedelec, P. G. Scott, and A. Ghahary, “Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy,” Surg. Clin. North Am. 77(3), 701–730 (1997).
[Crossref] [PubMed]

Ghassemi, P.

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

Gibran, N. S.

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

Gillman, T.

M. Wolman and T. Gillman, “A polarized light study of collagen in dermal wound healing,” Br. J. Exp. Pathol. 53(2), 85–89 (1972).
[PubMed]

Goldberg, M.

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Gong, P.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

Gragnani, A.

M. L. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

Gurtner, G. C.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Hardy, M. A.

M. A. Hardy, “The biology of scar formation,” Phys. Ther. 69(12), 1014–1024 (1989).
[PubMed]

Harunari, N.

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Healey, T.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Heimbach, D. M.

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

Hilton, J. G.

D. F. Sloan, R. D. Brown, C. H. Wells, and J. G. Hilton, “Tissue gases in human hypertrophic burn scars,” Plast. Reconstr. Surg. 61(3), 431–436 (1978).
[Crossref] [PubMed]

Holmes, J. W.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Honari, S.

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

Hu, X. H.

Ichioka, S.

S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
[Crossref] [PubMed]

Isik, F. F.

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

Jackson, D. S.

J. E. Dunphy and D. S. Jackson, “Practical applications of experimental studies in the care of te primarily closed wound,” Am. J. Surg. 104(2), 273–282 (1962).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Jiang, X.

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Jordan, M. H.

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

Kaartinen, I. S.

I. S. Kaartinen, P. O. Välisuo, J. T. Alander, and H. O. Kuokkanen, “Objective scar assessment--a new method using standardized digital imaging and spectral modelling,” Burns 37(1), 74–81 (2011).
[Crossref] [PubMed]

I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
[Crossref]

Kelly, K. M.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
[Crossref] [PubMed]

Kermode, J.

T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
[Crossref] [PubMed]

Khorasani, H.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Kienle, A.

N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014), doi:.
[Crossref] [PubMed]

Kreis, R. W.

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

Krishna, P.

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

Krishnaswamy, V.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

Kuokkanen, H. O.

I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
[Crossref]

I. S. Kaartinen, P. O. Välisuo, J. T. Alander, and H. O. Kuokkanen, “Objective scar assessment--a new method using standardized digital imaging and spectral modelling,” Burns 37(1), 74–81 (2011).
[Crossref] [PubMed]

Kurokawa, N.

N. Kurokawa, K. Ueda, and M. Tsuji, “Study of microvascular structure in keloid and hypertrophic scars: density of microvessels and the efficacy of three-dimensional vascular imaging,” J. Plast. Surg. Hand Surg. 44(6), 272–277 (2010).
[Crossref] [PubMed]

Laughney, A. M.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

Lee, J.

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Lemaillet, P.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

Leonard, C.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

Lester, M. E.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Levinson, H.

R. Fearmonti, J. Bond, D. Erdmann, and H. Levinson, “A review of scar scales and scar measuring devices,” Eplasty 10, e43 (2010).
[PubMed]

Li, S. K.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Liang, Z.

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

Liemert, A.

N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014), doi:.
[Crossref] [PubMed]

Liew, Y. M.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

Lim, R.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

Lin, B.

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

Linares, H. A.

H. A. Linares, “From wound to scar,” Burns 22(5), 339–352 (1996).
[Crossref] [PubMed]

Lindsay, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

Loh, S. A.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Longaker, M. T.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Lu, J. Q.

Lu, K.

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

Luo, Q.

T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
[Crossref] [PubMed]

Ma, X.

Maderal, A. D.

A. C. Vivas, J. C. Tang, A. D. Maderal, and M. H. Viera, “Hypertrophic scars and keloids, part 1: convensional treatments,” Cosmet. Dermatol. 25(7), 309–316 (2012).

Mann, R.

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Mauskar, N. A.

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

McArthur, R.

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

McIver, E.

T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
[Crossref] [PubMed]

McLaughlin, R. A.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Meyer, W.

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

Middelkoop, E.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
[Crossref] [PubMed]

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

Mino, M. J.

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

Moffatt, L. T.

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

Moffitt, T.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Moore, M.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Muangman, P.

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

Muffley, L. A.

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

Munro, P. R.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

Murphy, L.

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

Nakamura, D.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Nakatsuka, T.

S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
[Crossref] [PubMed]

Nathens, A. B.

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

Nedelec, B.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

E. E. Tredget, B. Nedelec, P. G. Scott, and A. Ghahary, “Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy,” Surg. Clin. North Am. 77(3), 701–730 (1997).
[Crossref] [PubMed]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Nguyen, C.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Niszczak, J.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Park, B. H.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Parry, I. S.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Paterno, J.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Paul, D. W.

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

Paulsen, K. D.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Piza-Katzer, H.

D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-Katzer, “Hypertrophic scars and keloids - A review of their pathophysiology, risk factors, and therapeutic management,” Dermatol. Surg. 35(2), 171–181 (2009).
[Crossref] [PubMed]

Pogue, B. W.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

Prahl, S. A.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Priendez, N. J.

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

Prindeze, N. J.

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

Pülzl, P.

D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-Katzer, “Hypertrophic scars and keloids - A review of their pathophysiology, risk factors, and therapeutic management,” Dermatol. Surg. 35(2), 171–181 (2009).
[Crossref] [PubMed]

Quick, C. D.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Ramella-Roman, J. C.

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

B. Boulbry, J. C. Ramella-Roman, and T. A. Germer, “Self-consistent calibration of a spectro-ellipsometer using a Fresnel rhomb as a reference sample,” Appl. Opt. 46(35), 8533–8541 (2007).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Ramos, M. L.

M. L. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

Rice, T. B.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

Richard, R.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Rivara, F. P.

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

Robert, R.

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

Rosenberg, L.

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

Saager, R. B.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
[Crossref] [PubMed]

Saggese, S.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
[Crossref] [PubMed]

Sampson, D. D.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

Scott, P. G.

E. E. Tredget, B. Nedelec, P. G. Scott, and A. Ghahary, “Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy,” Surg. Clin. North Am. 77(3), 701–730 (1997).
[Crossref] [PubMed]

Sekiya, N.

S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
[Crossref] [PubMed]

Serghiou, M.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Shi, Y.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Shibata, M.

S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
[Crossref] [PubMed]

Shupp, J. W.

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

Sloan, D. F.

D. F. Sloan, R. D. Brown, C. H. Wells, and J. G. Hilton, “Tissue gases in human hypertrophic burn scars,” Plast. Reconstr. Surg. 61(3), 431–436 (1978).
[Crossref] [PubMed]

Smith, J.

T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
[Crossref] [PubMed]

Soo, C.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Stewart, C. J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Stoner, M. L.

M. L. Stoner and F. M. Wood, “The treatment of hypopigmented lesions with cultured epithelial autograft,” J. Burn Care Rehabil. 21(1), 50–54 (2000).
[Crossref] [PubMed]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Sullivan, T.

T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
[Crossref] [PubMed]

Sun, C. H.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

Tang, J. C.

A. C. Vivas, J. C. Tang, A. D. Maderal, and M. H. Viera, “Hypertrophic scars and keloids, part 1: convensional treatments,” Cosmet. Dermatol. 25(7), 309–316 (2012).

Tempelman, F. R.

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

Ting, K.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Torkian, B. A.

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

Travis, T. E.

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

Tredget, E. E.

E. E. Tredget, B. Nedelec, P. G. Scott, and A. Ghahary, “Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy,” Surg. Clin. North Am. 77(3), 701–730 (1997).
[Crossref] [PubMed]

Tromberg, B. J.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105(10), 102028 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

Tsou, R.

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

Tsuji, M.

N. Kurokawa, K. Ueda, and M. Tsuji, “Study of microvascular structure in keloid and hypertrophic scars: density of microvessels and the efficacy of three-dimensional vascular imaging,” J. Plast. Surg. Hand Surg. 44(6), 272–277 (2010).
[Crossref] [PubMed]

Tuchin, V. V.

T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
[Crossref] [PubMed]

Tuggle, C. K.

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

Tulip, J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

Turner, T.

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

Tzankov, A.

D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-Katzer, “Hypertrophic scars and keloids - A review of their pathophysiology, risk factors, and therapeutic management,” Dermatol. Surg. 35(2), 171–181 (2009).
[Crossref] [PubMed]

Ueda, K.

N. Kurokawa, K. Ueda, and M. Tsuji, “Study of microvascular structure in keloid and hypertrophic scars: density of microvessels and the efficacy of three-dimensional vascular imaging,” J. Plast. Surg. Hand Surg. 44(6), 272–277 (2010).
[Crossref] [PubMed]

Underwood, R. A.

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

Va Lisuo, P. O.

I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
[Crossref]

Välisuo, P. O.

I. S. Kaartinen, P. O. Välisuo, J. T. Alander, and H. O. Kuokkanen, “Objective scar assessment--a new method using standardized digital imaging and spectral modelling,” Burns 37(1), 74–81 (2011).
[Crossref] [PubMed]

van der Wal, M. B.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
[Crossref] [PubMed]

van Gerven, M. S.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
[Crossref] [PubMed]

van Zuijlen, P. P.

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

Venna, S. S.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

Verhaegen, P. D.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
[Crossref] [PubMed]

Viera, M. H.

A. C. Vivas, J. C. Tang, A. D. Maderal, and M. H. Viera, “Hypertrophic scars and keloids, part 1: convensional treatments,” Cosmet. Dermatol. 25(7), 309–316 (2012).

Vivas, A. C.

A. C. Vivas, J. C. Tang, A. D. Maderal, and M. H. Viera, “Hypertrophic scars and keloids, part 1: convensional treatments,” Cosmet. Dermatol. 25(7), 309–316 (2012).

Wang, J.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Ward, R. S.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Ware, L.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Weber, J. R.

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105(10), 102028 (2009).
[Crossref]

Wei, R.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

Wells, A.

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

Wells, C. H.

D. F. Sloan, R. D. Brown, C. H. Wells, and J. G. Hilton, “Tissue gases in human hypertrophic burn scars,” Plast. Reconstr. Surg. 61(3), 431–436 (1978).
[Crossref] [PubMed]

Wells, W. A.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

Wen, X.

T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
[Crossref] [PubMed]

Whaley, D.

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

Wiechman, S. A.

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

Wolfram, D.

D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-Katzer, “Hypertrophic scars and keloids - A review of their pathophysiology, risk factors, and therapeutic management,” Dermatol. Surg. 35(2), 171–181 (2009).
[Crossref] [PubMed]

Wolman, M.

M. Wolman and T. Gillman, “A polarized light study of collagen in dermal wound healing,” Br. J. Exp. Pathol. 53(2), 85–89 (1972).
[PubMed]

Wong, B. J.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

Wood, F. M.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

M. L. Stoner and F. M. Wood, “The treatment of hypopigmented lesions with cultured epithelial autograft,” J. Burn Care Rehabil. 21(1), 50–54 (2000).
[Crossref] [PubMed]

Xie, S.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Xie, Y.

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

Xiong, S.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Yannas, I. V.

A. G. Ferdman and I. V. Yannas, “Scattering of light from histologic sections: a new method for the analysis of connective tissue,” J. Invest. Dermatol. 100(5), 710–716 (1993).
[Crossref] [PubMed]

Yates, C. C.

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

Yee, H.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

Yeh, A. T.

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

Yeong, E. K.

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

Young, A.

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

Yu, T.

T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
[Crossref] [PubMed]

Zara, J.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Zeng, H.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Zhang, X.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Zheng, L.

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

Zheng, Z.

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

Zhu, D.

T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
[Crossref] [PubMed]

Zhu, K. Q.

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

Zhuo, S.

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Abstract. Proceedings of the American Burn Association (1)

T. E. Travis, P. Ghassemi, N. J. Priendez, D. W. Paul, L. T. Moffatt, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Histological and optical characteristics of pigmented scars in a swine model of human wound healing,” Abstract. Proceedings of the American Burn Association 46, 104 (2014).

Am. J. Pathol. (2)

H. Khorasani, Z. Zheng, C. Nguyen, J. Zara, X. Zhang, J. Wang, K. Ting, and C. Soo, “A quantitative approach to scar analysis,” Am. J. Pathol. 178(2), 621–628 (2011).
[Crossref] [PubMed]

C. C. Yates, P. Krishna, D. Whaley, R. Bodnar, T. Turner, and A. Wells, “Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring,” Am. J. Pathol. 176(4), 1743–1755 (2010).
[Crossref] [PubMed]

Am. J. Surg. (1)

J. E. Dunphy and D. S. Jackson, “Practical applications of experimental studies in the care of te primarily closed wound,” Am. J. Surg. 104(2), 273–282 (1962).
[Crossref] [PubMed]

Ann. Plast. Surg. (1)

S. Ichioka, T. Ando, M. Shibata, N. Sekiya, and T. Nakatsuka, “Oxygen consumption of keloids and hypertrophic scars,” Ann. Plast. Surg. 60(2), 194–197 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Facial Plast. Surg. (2)

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[Crossref] [PubMed]

B. A. Torkian, A. T. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, and B. J. Wong, “Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy,” Arch. Facial Plast. Surg. 6(3), 180–187 (2004).
[Crossref] [PubMed]

Br. J. Dermatol. (1)

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,” Br. J. Dermatol. 161(1), 48–55 (2009).
[Crossref] [PubMed]

Br. J. Exp. Pathol. (1)

M. Wolman and T. Gillman, “A polarized light study of collagen in dermal wound healing,” Br. J. Exp. Pathol. 53(2), 85–89 (1972).
[PubMed]

Burns (9)

K. M. Bombaro, L. H. Engrav, G. J. Carrougher, S. A. Wiechman, L. Faucher, B. A. Costa, D. M. Heimbach, F. P. Rivara, and S. Honari, “What is the prevalence of hypertrophic scarring following burns?” Burns 29(4), 299–302 (2003).
[Crossref] [PubMed]

R. Robert, W. Meyer, S. Bishop, L. Rosenberg, L. Murphy, and P. Blakeney, “Disfiguring burn scars and adolescent self-esteem,” Burns 25(7), 581–585 (1999).
[Crossref] [PubMed]

H. A. Linares, “From wound to scar,” Burns 22(5), 339–352 (1996).
[Crossref] [PubMed]

I. S. Kaartinen, P. O. Välisuo, J. T. Alander, and H. O. Kuokkanen, “Objective scar assessment--a new method using standardized digital imaging and spectral modelling,” Burns 37(1), 74–81 (2011).
[Crossref] [PubMed]

L. J. Draaijers, F. R. Tempelman, Y. A. Botman, R. W. Kreis, E. Middelkoop, and P. P. van Zuijlen, “Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?” Burns 30(2), 103–107 (2004).
[Crossref] [PubMed]

R. Bray, K. Forrester, C. Leonard, R. McArthur, J. Tulip, and R. Lindsay, “Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods,” Burns 29(3), 199–206 (2003).
[Crossref] [PubMed]

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[Crossref] [PubMed]

Z. Liang, L. H. Engrav, P. Muangman, L. A. Muffley, K. Q. Zhu, G. J. Carrougher, R. A. Underwood, and N. S. Gibran, “Nerve quantification in female red Duroc pig (FRDP) scar compared to human hypertrophic scar,” Burns 30(1), 57–64 (2004).
[Crossref] [PubMed]

N. Harunari, K. Q. Zhu, R. T. Armendariz, H. Deubner, P. Muangman, G. J. Carrougher, F. F. Isik, N. S. Gibran, and L. H. Engrav, “Histology of the thick scar on the female, red Duroc pig: final similarities to human hypertrophic scar,” Burns 32(6), 669–677 (2006).
[Crossref] [PubMed]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).
[Crossref]

Cosmet. Dermatol. (1)

A. C. Vivas, J. C. Tang, A. D. Maderal, and M. H. Viera, “Hypertrophic scars and keloids, part 1: convensional treatments,” Cosmet. Dermatol. 25(7), 309–316 (2012).

Dermatol. Surg. (1)

D. Wolfram, A. Tzankov, P. Pülzl, and H. Piza-Katzer, “Hypertrophic scars and keloids - A review of their pathophysiology, risk factors, and therapeutic management,” Dermatol. Surg. 35(2), 171–181 (2009).
[Crossref] [PubMed]

Eplasty (1)

R. Fearmonti, J. Bond, D. Erdmann, and H. Levinson, “A review of scar scales and scar measuring devices,” Eplasty 10, e43 (2010).
[PubMed]

FASEB J. (1)

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner, “Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis,” FASEB J. 21(12), 3250–3261 (2007).
[Crossref] [PubMed]

J. Am. Acad. Dermatol. (1)

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64(4), 706–715 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105(10), 102028 (2009).
[Crossref]

J. Biomed. Opt. (8)

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, and W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[Crossref] [PubMed]

T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing,” J. Biomed. Opt. 16(9), 095002 (2011).
[Crossref] [PubMed]

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19(2), 021111 (2014).
[Crossref] [PubMed]

N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle, “Sources of errors in spatial frequency domain imaging of scattering media,” J. Biomed. Opt. 19(7), 071405 (2014), doi:.
[Crossref] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[Crossref] [PubMed]

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 076014 (2012).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

J. Biophotonics (1)

X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, and B. Lin, “Quantified characterization of human cutaneous normal scar using multiphoton microscopy,” J. Biophotonics 3(1-2), 108–116 (2010).
[Crossref] [PubMed]

J. Burn Care Rehabil. (5)

T. Sullivan, J. Smith, J. Kermode, E. McIver, and D. J. Courtemanche, “Rating the burn scar,” J. Burn Care Rehabil. 11(3), 256–260 (1990).
[Crossref] [PubMed]

M. J. Baryza and G. A. Baryza, “The Vancouver scar scale: an administration tool and its interrater reliability,” J. Burn Care Rehabil. 16(5), 535–538 (1995).
[Crossref] [PubMed]

E. K. Yeong, R. Mann, L. H. Engrav, M. Goldberg, V. Cain, B. Costa, M. Moore, D. Nakamura, and J. Lee, “Improved burn scar assessment with use of a new scar-rating scale,” J. Burn Care Rehabil. 18(4), 353–355 (1997).
[Crossref] [PubMed]

R. Tsou, J. K. Cole, A. B. Nathens, F. F. Isik, D. M. Heimbach, L. H. Engrav, and N. S. Gibran, “Analysis of hypertrophic and normal scar gene expression with cDNA microarrays,” J. Burn Care Rehabil. 21(6), 541–550 (2000).
[Crossref] [PubMed]

M. L. Stoner and F. M. Wood, “The treatment of hypopigmented lesions with cultured epithelial autograft,” J. Burn Care Rehabil. 21(1), 50–54 (2000).
[Crossref] [PubMed]

J. Burn Care Res. (5)

Y. Xie, K. Q. Zhu, H. Deubner, D. A. Emerson, G. J. Carrougher, N. S. Gibran, and L. H. Engrav, “The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female yorkshire pig,” J. Burn Care Res. 28(3), 500–506 (2007).
[Crossref] [PubMed]

K. Q. Zhu, G. J. Carrougher, O. P. Couture, C. K. Tuggle, N. S. Gibran, and L. H. Engrav, “Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring,” J. Burn Care Res. 29(5), 815–827 (2008).
[Crossref] [PubMed]

T. E. Travis, M. J. Mino, L. T. Moffatt, N. A. Mauskar, N. J. Prindeze, P. Ghassemi, J. C. Ramella-Roman, M. H. Jordan, and J. W. Shupp, “Biphasic presence of fibrocytes in a porcine hypertrophic scar model,” J. Burn Care Res. 34(2), S94 (2014).
[PubMed]

M. L. Ramos, A. Gragnani, and L. M. Ferreira, “Is there an ideal animal model to study hypertrophic scarring?” J. Burn Care Res. 29(2), 363–368 (2008).
[Crossref] [PubMed]

R. Richard, M. J. Baryza, J. A. Carr, W. S. Dewey, M. E. Dougherty, L. Forbes-Duchart, B. J. Franzen, T. Healey, M. E. Lester, S. K. Li, M. Moore, D. Nakamura, B. Nedelec, J. Niszczak, I. S. Parry, C. D. Quick, M. Serghiou, R. S. Ward, L. Ware, and A. Young, “Burn rehabilitation and research: proceedings of a consensus summit,” J. Burn Care Res. 30(4), 543–573 (2009).
[Crossref] [PubMed]

J. Invest. Dermatol. (2)

A. G. Ferdman and I. V. Yannas, “Scattering of light from histologic sections: a new method for the analysis of connective tissue,” J. Invest. Dermatol. 100(5), 710–716 (1993).
[Crossref] [PubMed]

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

J. Plast. Surg. Hand Surg. (1)

N. Kurokawa, K. Ueda, and M. Tsuji, “Study of microvascular structure in keloid and hypertrophic scars: density of microvessels and the efficacy of three-dimensional vascular imaging,” J. Plast. Surg. Hand Surg. 44(6), 272–277 (2010).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, and A. J. Durkin, “A light emitting diode (LED) based spatial frequency domain imaging system for nonmelanoma skin cancer: quantitative reflectance imaging,” Lasers Surg. Med. 45(4), 207–215 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Ther. (1)

M. A. Hardy, “The biology of scar formation,” Phys. Ther. 69(12), 1014–1024 (1989).
[PubMed]

Plast. Reconstr. Surg. (1)

D. F. Sloan, R. D. Brown, C. H. Wells, and J. G. Hilton, “Tissue gases in human hypertrophic burn scars,” Plast. Reconstr. Surg. 61(3), 431–436 (1978).
[Crossref] [PubMed]

Polarization: Measurement, Analysis, and Remote Sensing, Proc. SPIE (1)

T. A. Germer and C. C. Asmail, “Bidirectional ellipsometry and its application to the characterization of surfaces,” Polarization: Measurement, Analysis, and Remote Sensing, Proc. SPIE 3121, 173–182 (1997).
[Crossref]

Scanning (1)

X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, and B. Lin, “Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging,” Scanning 33(4), 195–200 (2011).
[PubMed]

Surg. Clin. North Am. (1)

E. E. Tredget, B. Nedelec, P. G. Scott, and A. Ghahary, “Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy,” Surg. Clin. North Am. 77(3), 701–730 (1997).
[Crossref] [PubMed]

Wound Rep. Reg. (1)

I. S. Kaartinen, P. O. Va Lisuo, V. Bochko, J. T. Alander, and H. O. Kuokkanen, “How to assess scar hypertrophy-a comparison of subjective scales and spectrocutometry: a new objective method,” Wound Rep. Reg. 19(3), 316–323 (2011).
[Crossref]

Other (3)

J. C. Ramella-Roman, B. Boulbry, and T. A. Germer, “Hemispherical imaging of skin with polarized light,” in Saratov Fall Meeting, Optical Technologies in Biophysics and Medicine VIII, Valery V. Tuchin, Ed., Proc. SPIE 6535, 65350U (2006).

H. M. Merklinger, Focusing the View Camera (Belford, Nova Scotia: Seaboard Printing Ltd. 1996).

T. A. Germer, “SCATMECH: Polarized Light Scattering C++ Class Library,” (2008), http://physics.nist.gov/scatmech .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 The process of wound healing vs. postinjury time.
Fig. 2
Fig. 2 A schematic side view of the polarized multispectral imaging system.
Fig. 3
Fig. 3 The geometry of out-of-plane scattering; θi is the incident polar angle, θs is the scattered polar angle, and φi is the incident azimuth angle.
Fig. 4
Fig. 4 Polarized multispectral imaging system.
Fig. 5
Fig. 5 Experimental set up for Spectro-polarimeter calibration; rotary polarizer was placed between light source and wave-plate for before configuration and between wave-plate and mirror for after configuration. D1 shows the position of diffuser.
Fig. 6
Fig. 6 Skin grafting using an electric dermatome (A) and excisional wound on day zero (B).
Fig. 7
Fig. 7 Residual Stokes parameters for λ = 525 nm (A, B) λ = 632 nm (C, D) and as a function of the polarizer angle: A, C: before. B, D: after.
Fig. 8
Fig. 8 The principal angle of polarization of gold samples for λ = 632 nm illumination from each of the tubes located at a different azimuth angles. There is a good agreement between measurements and the facet scattering model.
Fig. 9
Fig. 9 Absorption and reduced scattering coefficient of polyurethane phantoms measured by the SFDI module versus the measurements by an IAD at λ = 632 nm. Rectangular symbols show the averaged value and error bars are the standard deviation of the data. Doted lines show ± 10% error boundaries.
Fig. 10
Fig. 10 Optical properties of a polyurethane phantom at various wavelengths. Rectangular symbols show the averaged value measured by the SFDI module and error bars are the standard deviation of the data. Asterisks show the measurements done by the IAD.
Fig. 11
Fig. 11 Scar appearance on day 105 after wounding (A), scar’s blood perfusion map (B), its Hb content (C) and SO2 (D) maps. The black string visible in figure A shows the reference suture.
Fig. 12
Fig. 12 Blood hemoglobin volume fraction versus time (A), blood perfusion versus time (B), and vascularity VSS score versus time (C). Control is uninjured skin.
Fig. 13
Fig. 13 Water content level versus time.
Fig. 14
Fig. 14 Melanin volume fraction maps of the hyper- and hypo-pigmented regions of a scar on days 70 (A,B) and 126 (C,D).
Fig. 15
Fig. 15 Melanin volume fraction versus time (A) and pigmentation VSS score versus time (B). Control is uninjured skin
Fig. 16
Fig. 16 Reduced scattering coefficient maps at λ = 455 nm, normal skin (A) and HTS on day 119 after wounding (B).
Fig. 17
Fig. 17 Reduced scattering coefficient versus time at λ = 455 nm.
Fig. 18
Fig. 18 Sample Stokes intensity images at λ = 525 nm captured at azimuth angles of 72 degrees from the same HTS on days 91 with shiny surface (A) and 112 with relatively rougher surface (B).
Fig. 19
Fig. 19 The principal angle of polarization, η, versus azimuth angle at two points of time and λ = 525 nm. The dotted curve corresponds to the facet scattering model.

Tables (3)

Tables Icon

Table 1 Comparison between optical methods of scar assessment and this study.

Tables Icon

Table 2 Timing plan for the animal study

Tables Icon

Table 3 Gold roughness phantom - experimental RMS error

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η= 1 2 tan 1 ( u q ).
μ a =B×[ ( 1S )× μ aHb +S× μ aHb O 2 ]+M× μ aMel +W× μ aWater +C.

Metrics