Abstract

Digital-scanned light-sheet microscopy (DSLM) illuminates a sample in a plane and captures single-photon–excitation fluorescence images with a camera from a direction perpendicular to the light sheet. This method is potentially useful for observing biological specimens, because image acquisition is relatively fast, resulting in reduction of phototoxicity. However, DSLM cannot be effectively applied to high-scattering materials due to the image blur resulting from thickening of the light sheet by scattered photons. However, two-photon–excitation DSLM (2p-DSLM) enables collection of high-contrast image with near infrared (NIR) excitation. In conventional 2p-DSLM, the minimal excitation volume for two-photon excitation restricts the field of view. In this study, we achieved wide-field 2p-DSLM by using a high–pulse energy fiber laser, and then used this technique to perform intravital imaging of a small model fish species, medaka (Oryzias latipes). Wide fields of view (>700 μm) were achieved by using a low–numerical aperture (NA) objective lens and high–peak energy NIR excitation at 1040 nm. We also performed high-speed imaging at near-video rate and successfully captured the heartbeat movements of a living medaka fish at 20 frames/sec.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope

Yusuke Oshima, Hidetoshi Sato, Hiroko Kajiura-Kobayashi, Tetsuaki Kimura, Kiyoshi Naruse, and Shigenori Nonaka
Opt. Express 20(15) 16195-16204 (2012)

Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: characterization and application

Zeno Lavagnino, Francesca Cella Zanacchi, Emiliano Ronzitti, and Alberto Diaspro
Opt. Express 21(5) 5998-6008 (2013)

Optically sectioned imaging by oblique plane microscopy

C. Dunsby
Opt. Express 16(25) 20306-20316 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75(4), 2015–2024 (1998).
    [Crossref] [PubMed]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  4. M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
    [Crossref] [PubMed]
  5. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
    [Crossref] [PubMed]
  6. R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
    [Crossref] [PubMed]
  7. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref] [PubMed]
  8. C. J. Engelbrecht and E. H. Stelzer, “Resolution enhancement in a light-sheet-based microscope (SPIM),” Opt. Lett. 31(10), 1477–1479 (2006).
    [Crossref] [PubMed]
  9. C. J. Engelbrecht, K. Greger, E. G. Reynaud, U. Krzic, J. Colombelli, and E. H. Stelzer, “Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM),” Opt. Express 15(10), 6420–6430 (2007).
    [Crossref] [PubMed]
  10. P. J. Keller and E. H. Stelzer, “Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy,” Curr. Opin. Neurobiol. 18(6), 624–632 (2008).
    [Crossref] [PubMed]
  11. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  12. J. Huisken, “Slicing embryos gently with laser light sheets,” Bioessays 34(5), 406–411 (2012).
    [Crossref] [PubMed]
  13. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
    [Crossref] [PubMed]
  14. F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).
  15. F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
    [Crossref] [PubMed]
  16. Y. Oshima, H. Sato, H. Kajiura-Kobayashi, T. Kimura, K. Naruse, and S. Nonaka, “Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope,” Opt. Express 20(15), 16195–16204 (2012).
    [Crossref]
  17. Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
    [Crossref] [PubMed]
  18. M. Kinoshita, K. Murata, K. Naruse, and M. Tanaka, Medaka, Biology, Management, and Experimental Protocols (John Wiley & Sons 2009).
  19. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
    [Crossref] [PubMed]
  20. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  21. J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
    [Crossref] [PubMed]
  22. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21(11), 13824–13839 (2013).
    [Crossref] [PubMed]
  23. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [Crossref] [PubMed]

2014 (1)

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

2013 (3)

F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21(11), 13824–13839 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (4)

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

2008 (2)

P. J. Keller and E. H. Stelzer, “Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy,” Curr. Opin. Neurobiol. 18(6), 624–632 (2008).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

C. J. Engelbrecht and E. H. Stelzer, “Resolution enhancement in a light-sheet-based microscope (SPIM),” Opt. Lett. 31(10), 1477–1479 (2006).
[Crossref] [PubMed]

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
[Crossref] [PubMed]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

2003 (1)

1998 (1)

V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75(4), 2015–2024 (1998).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Alessandri, K.

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Cella Zanacchi, F.

F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
[Crossref] [PubMed]

Centonze, V. E.

V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75(4), 2015–2024 (1998).
[Crossref] [PubMed]

Choi, J. M.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Chow, R. H.

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Colombelli, J.

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dhonukshe, P. B.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Diaspro, A.

F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
[Crossref] [PubMed]

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

Difato, F.

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

Engelbrecht, C. J.

Fahrbach, F. O.

Faretta, M.

F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
[Crossref] [PubMed]

Fraser, S. E.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Furia, L.

F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
[Crossref] [PubMed]

Gadella, T. W.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Geisbauer, M.

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
[Crossref] [PubMed]

Greger, K.

Gurchenkov, V.

Hasan, M. T.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hikita, A.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Hoebe, R. A.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Honkura, N.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Horiuch, H.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Huisken, J.

J. Huisken, “Slicing embryos gently with laser light sheets,” Bioessays 34(5), 406–411 (2012).
[Crossref] [PubMed]

J. Huisken and D. Y. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Imamura, T.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Kajiura-Kobayashi, H.

Keller, P. J.

P. J. Keller and E. H. Stelzer, “Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy,” Curr. Opin. Neurobiol. 18(6), 624–632 (2008).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Kimura, T.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Koos, D. S.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Krzic, U.

Lavagnino, Z.

F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
[Crossref] [PubMed]

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

Madsen, D.

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
[Crossref] [PubMed]

Manders, E. M.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Mertz, J.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

Michael, D. J.

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
[Crossref] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Miura, H.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Naruse, K.

Nassoy, P.

Nonaka, S.

Ogata, T.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Oheim, M.

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
[Crossref] [PubMed]

Oshima, Y.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Y. Oshima, H. Sato, H. Kajiura-Kobayashi, T. Kimura, K. Naruse, and S. Nonaka, “Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope,” Opt. Express 20(15), 16195–16204 (2012).
[Crossref]

Pesce, M.

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Reynaud, E. G.

Rohrbach, A.

Ronzitti, E.

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

Sato, H.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Stainier, D. Y.

Stelzer, E. H.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

P. J. Keller and E. H. Stelzer, “Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy,” Curr. Opin. Neurobiol. 18(6), 624–632 (2008).
[Crossref] [PubMed]

C. J. Engelbrecht, K. Greger, E. G. Reynaud, U. Krzic, J. Colombelli, and E. H. Stelzer, “Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM),” Opt. Express 15(10), 6420–6430 (2007).
[Crossref] [PubMed]

C. J. Engelbrecht and E. H. Stelzer, “Resolution enhancement in a light-sheet-based microscope (SPIM),” Opt. Lett. 31(10), 1477–1479 (2006).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Supatto, W.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Theer, P.

Truong, T. V.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Van Noorden, C. J.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Van Oven, C. H.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

White, J. G.

V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75(4), 2015–2024 (1998).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Zanacchi, F. C.

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

Adv. Drug Deliv. Rev. (1)

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006).
[Crossref] [PubMed]

Bioessays (1)

J. Huisken, “Slicing embryos gently with laser light sheets,” Bioessays 34(5), 406–411 (2012).
[Crossref] [PubMed]

Biophys. J. (1)

V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75(4), 2015–2024 (1998).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

P. J. Keller and E. H. Stelzer, “Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy,” Curr. Opin. Neurobiol. 18(6), 624–632 (2008).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata, H. Miura, and T. Imamura, “Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system,” Lasers Surg. Med. 46(7), 563–572 (2014).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Nat. Methods (4)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

PLoS ONE (1)

F. Cella Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, and A. Diaspro, “Light-sheet confined super-resolution using two-photon photoactivation,” PLoS ONE 8(7), e67667 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

F. C. Zanacchi, Z. Lavagnino, M. Pesce, F. Difato, E. Ronzitti, and A. Diaspro, “Two-photon fluorescence excitation within a light sheet based microscopy architecture,” Proc. SPIE 7903279032X (2011).

Science (3)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Other (1)

M. Kinoshita, K. Murata, K. Naruse, and M. Tanaka, Medaka, Biology, Management, and Experimental Protocols (John Wiley & Sons 2009).

Supplementary Material (3)

» Media 1: AVI (3510 KB)     
» Media 2: AVI (2212 KB)     
» Media 3: AVI (3510 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of main components of our custom-built 2p-DSLM system. In this setup, a NIR ultra–short pulse fiber laser (1040 nm, FCPA µ Jewel D-1000) and a solid-state laser (488 nm, 85BCD) are available for both single- and two-photon–excitation via the dichroic mirror. The excitation laser is scanned by the galvanometer scanner, and focused on the sample via the illumination objective lens ( × 5). The excitation light sheet is illuminated within the sample along the X-Y plane. The numerical aperture (NA) of the illumination can be adjusted by the iris diaphragm in front of the illumination objective pupil. Fluorescence images are captured with a conventional wide-field microscopy system (electron-multiplying [EM]-CCD camera, tube lens, band-pass filter, short-pass filter, and detection objective lens) perpendicularly to the light sheet. The sample can be moved along the Z-axis to acquire Z-stack images.
Fig. 2
Fig. 2 Intensity distributions of single- and two-photon (1p and 2p) excitation fluorescence signal of Rhodamine B generated by focusing excitation lasers at 488 nm and 1040 nm, respectively. Each fluorescence image was standardized, and images are shown here in pseudo-color. The top pattern shows the 1p-excitation fluorescence image, and the lower patterns show the 2p-excitation fluorescence images obtained with incident pupil aperture (i.e., diameter of the iris diaphragm located in front of the illumination objective pupil) set to 10, 9, 8, 7, 6, 5, 4, and 3 Ø (mm) corresponding to effective N.A. of 0.14, 0.12, 0.11, 0.10, 0.08, 0.07, 0.06, and 0.04, respectively. “Center” indicates the crude focal plane of the illumination objective. The arrow pointing to the left shows the direction of the illuminating irradiation. Scale bar: 200 µm.
Fig. 3
Fig. 3 Signal intensity profiles of single- and two-photon (1p and 2p) excitation fluorescence. (a), (b) Line graphs of the X-axis (a) and Y-axis (b) profiles calculated from the fluorescent beam images of Fig. 2. The X-axes of the graphs indicate the distance from the point with maximal signal intensity in respective images shown in Fig. 2. The signal intensities (i.e., the vertical axis of the graphs) were normalized to the maximum value of each signal. The aperture size of the iris at the back of the illumination objective was changed from 3 mm (N.A. 0.04) to 10 mm (N.A. 0.14) in diameter for the 2p profiles (indicated in color). (c), (d) The bar graphs of the X-axis (c) and Y-axis (d) full width at half maximum (FWHM) of the profiles (a) and (b) for each aperture diameter (mm).
Fig. 4
Fig. 4 The thickness of light-sheet illumination in single- and two-photon (1p and 2p) excitation. (a), (b) Profiles along the Y-axis, calculated from the 1p and 2p fluorescence beam images in Fig. 2. Each graph was measured from 0 µm to 240 µm from the center of the beam images at 40-µm intervals. In the 2p data series, the aperture diameter was fixed at 4 mm (N.A. 0.06). The signal intensities (vertical axes of the graphs) were normalized to the maximum value of each signal. The horizontal axes of the graph indicates the distance from the center of the image. (c) Line graphs of the full width at half maximum (FWHM) of the plot profiles in (a) and (b).
Fig. 5
Fig. 5 Comparison of image quality in the X-Y plane for single- and two-photon (1p and 2p) excitation, using a biological sample (young DsRed medaka fish fixed in 4%PFA). The arrows pointing to the right show the direction of illuminating irradiation. (a) Schematic of the region of interest (ROI) for the fluorescence image. Labels indicate the anatomical locations of tissues in medaka fish (CAU: caudal; D: dorsal; V: ventral; E: eye; ABD: abdominal part; M: muscle; I: intestine). The arrows indicate the illumination direction of the light sheet. (b), (c) 1p and 2p excitation fluorescence images of DsRed medaka fish at a depth of 143 µm from the side surface of the body. Each image was normalized to the maximum signal intensity. Scale bars: 200 µm. (d) Line graphs showing intensity profiles of 1p (red line) and 2p excitation (blue line) along the X-axis, calculated from fluorescence images along the yellow lines in (b) and (c), respectively. The horizontal axis of the graph indicates the X-axial distance from the left edge of the image.
Fig. 6
Fig. 6 Comparison of the image quality in the axial direction (X-Z plane) for single- and two-photon (1p and 2p) excitation, using a biological sample (young DsRed medaka fish fixed in 4%PFA). The arrows pointing to the right show the direction of illuminating irradiation. (a), (b) The maximum intensity projection of Z-stacked images generated from 1p and 2p excitation fluorescence images of DsRed medaka fish, collected at intervals of 2.5 μm steps from the side surface of sample. (c), (d) X-Z plane images reconstructed from the Z-stack image of 1p and 2p excitation fluorescence images. Each image was cross-sectioned along the yellow lines shown in (a) and (b). Each picture was normalized to maximum signal intensity. The detection objective lens is the upper side of the image. Scale bars: 200 µm. (e), (f) Line graphs of the Z-axis intensity profiles calculated from the blue line A (e) and the green line B (f) from the images shown in (c) and (d), respectively. The horizontal axis of the graph shows the Z-axial distance from the top edge along each line in images (c) and (d), respectively. (g) Multi-angle viewing of 2p excitation fluorescence images of the DsRed medaka fish obtained by volume rendering of Z-stack images (Media 1).
Fig. 7
Fig. 7 Intravital two-photon–excitation fluorescence imaging of the beating heart in a living DsRed medaka fish. The arrow pointing to the left shows the direction of illuminating irradiation. (a) Schematic of regions of interest (ROIs) in the fluorescence image of the whole body of the medaka fish (E: eye; ABD: abdomen; CAU: caudal). (b) Schematic of anatomical locations of tissues in ROIs inside the white square shown in (a) (A: atrium; B: bulbus arteriosus; V: ventricle of heart). The detection objective lens is angled relative to the abdominal region of the sample. (c)–(j) Two-photon–excitation fluorescence images of the beating heart in a living medaka fish, taken at 50-ms intervals (Media 2). Scale bars, 200 µm.

Tables (1)

Tables Icon

Table 1 Specifications of the FCPA µ Jewel D1000 and typical commercially available femtosecond laser systems

Metrics