Abstract

We present a method, based on a single scattering model, to calculate the attenuation coefficient of each pixel in optical coherence tomography (OCT) depth profiles. Numerical simulations were used to determine the model’s response to different depths and attenuation coefficients. Experiments were performed on uniform and layered phantoms with varying attenuation coefficients. They were measured by a 1300 nm OCT system and their attenuation coefficients were evaluated by our proposed method and by fitting the OCT slope as the gold standard. Both methods showed largely consistent results for the uniform phantoms. On the layered phantom, only our proposed method accurately estimated the attenuation coefficients. For all phantoms, the proposed method largely reduced the variability of the estimated attenuation coefficients. The method was illustrated on an in-vivo retinal OCT scan, effectively removing common imaging artifacts such as shadowing. By providing localized, per-pixel attenuation coefficients, this method enables tissue characterization based on attenuation coefficient estimates from OCT data.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kuc, “Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization,” IEEE Trans. Biomed. Eng.27, 312–319 (1980).
    [CrossRef] [PubMed]
  2. G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).
  3. K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
    [CrossRef] [PubMed]
  4. Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
    [CrossRef]
  5. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
    [CrossRef] [PubMed]
  6. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008).
    [CrossRef] [PubMed]
  7. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
    [CrossRef] [PubMed]
  8. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
    [CrossRef] [PubMed]
  9. K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
    [CrossRef] [PubMed]
  10. K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
    [CrossRef] [PubMed]
  11. P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
    [CrossRef]
  12. Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).
  13. J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012).
    [CrossRef] [PubMed]
  14. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012).
    [CrossRef] [PubMed]
  15. F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
    [CrossRef]
  16. F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
    [CrossRef]
  17. J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
    [CrossRef]
  18. J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
    [CrossRef]
  19. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).
  20. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011).
    [CrossRef] [PubMed]
  21. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994).
    [CrossRef] [PubMed]
  22. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12, 4353–4365 (2004).
    [CrossRef] [PubMed]
  23. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9, 227–233 (2003).
    [CrossRef]
  24. D. I. Hughes and F. A. Duck, “Automatic attenuation compensation for ultrasonic imaging,” Ultrasound Med. Biol.23, 651–664 (1997).
    [CrossRef] [PubMed]
  25. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
    [CrossRef] [PubMed]
  26. J. A. Li, M. de Groot, F. Helderman, J. H. Mo, J. M. A. Daniels, K. Grunberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express20, 24132–24138 (2012).
    [CrossRef] [PubMed]
  27. M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011).
    [CrossRef] [PubMed]
  28. P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt.49, 3538–3544 (2010).
    [CrossRef] [PubMed]
  29. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A17, 484–490 (2000).
    [CrossRef]

2013 (1)

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

2012 (7)

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

J. A. Li, M. de Groot, F. Helderman, J. H. Mo, J. M. A. Daniels, K. Grunberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express20, 24132–24138 (2012).
[CrossRef] [PubMed]

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012).
[CrossRef] [PubMed]

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

2011 (3)

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011).
[CrossRef] [PubMed]

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011).
[CrossRef] [PubMed]

2010 (6)

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt.49, 3538–3544 (2010).
[CrossRef] [PubMed]

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

2008 (1)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008).
[CrossRef] [PubMed]

2005 (1)

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9, 227–233 (2003).
[CrossRef]

2001 (1)

F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
[CrossRef]

2000 (1)

1997 (1)

D. I. Hughes and F. A. Duck, “Automatic attenuation compensation for ultrasonic imaging,” Ultrasound Med. Biol.23, 651–664 (1997).
[CrossRef] [PubMed]

1994 (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994).
[CrossRef] [PubMed]

1992 (1)

Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
[CrossRef]

1990 (2)

G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

1980 (1)

R. Kuc, “Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization,” IEEE Trans. Biomed. Eng.27, 312–319 (1980).
[CrossRef] [PubMed]

Aalders, M.

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

Aalders, M. C.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9, 227–233 (2003).
[CrossRef]

F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
[CrossRef]

Aalders, M. C. G.

Adegun, O.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

Agemura, D. H.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Andersen, P. E.

Bader, D.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

Barwari, K.

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

Berger, G.

G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).

Bouma, B. E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008).
[CrossRef] [PubMed]

Cauberg, E. C.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

Chen, B.

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

Chen, C.

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

Daniels, J. M. A.

de Boer, J. F.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012).
[CrossRef] [PubMed]

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012).
[CrossRef] [PubMed]

J. A. Li, M. de Groot, F. Helderman, J. H. Mo, J. M. A. Daniels, K. Grunberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express20, 24132–24138 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011).
[CrossRef] [PubMed]

de Bruin, D. M.

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

de Groot, M.

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

de la Rosette, J.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

de la Rosette, J. J.

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

Duck, F. A.

D. I. Hughes and F. A. Duck, “Automatic attenuation compensation for ultrasonic imaging,” Ultrasound Med. Biol.23, 651–664 (1997).
[CrossRef] [PubMed]

Eckhaus, M. A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994).
[CrossRef] [PubMed]

Ethier, C. R.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011).
[CrossRef] [PubMed]

Faber, D.

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

Faber, D. J.

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12, 4353–4365 (2004).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9, 227–233 (2003).
[CrossRef]

F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
[CrossRef]

Fortune, F.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

Gao, B. Z.

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Gao, W.

Girard, M. J. A.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011).
[CrossRef] [PubMed]

Goderie, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Gonzalo, N.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Grunberg, K.

Hagi-Pavli, E.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

He, Y.

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

Helderman, F.

Hughes, D. I.

D. I. Hughes and F. A. Duck, “Automatic attenuation compensation for ultrasonic imaging,” Ultrasound Med. Biol.23, 651–664 (1997).
[CrossRef] [PubMed]

Ito, M.

Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
[CrossRef]

Jacques, S. L.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

Knuttel, A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994).
[CrossRef] [PubMed]

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

Koljenovic, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Komorowski, R. A.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Kuc, R.

R. Kuc, “Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization,” IEEE Trans. Biomed. Eng.27, 312–319 (1980).
[CrossRef] [PubMed]

Laguna, M. P.

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

Laugier, P.

G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).

Lee, P.

Lemij, H. G.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011).
[CrossRef] [PubMed]

Li, J.

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

Li, J. A.

Liu, S.

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

Mari, J. M.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011).
[CrossRef] [PubMed]

McLaughlin, R. A.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

Mo, J. H.

Murakami, K.

Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
[CrossRef]

O’Brien, W. D.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Okamura, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Oosterhuis, J. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Pasterkamp, G.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

Pelc, L. R.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Perree, J.

F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
[CrossRef]

Perrin, J.

G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).

Piper, K.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

Poot, A.

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

Regar, E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Rhyne, T. L.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Robbins, P.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

Sagar, K. B.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Sampson, D. D.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

Sassoon, D. M. B.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

Saunders, C.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994).
[CrossRef] [PubMed]

Scolaro, L.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

Serruys, P. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Shen, Z.

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

Shiina, T.

Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
[CrossRef]

Strouthidis, N. G.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011).
[CrossRef] [PubMed]

Sugata, Y.

Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
[CrossRef]

Sutedja, T. G.

Tang, T.

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Tearney, G. J.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Thalabard, J. C.

G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).

Thrane, L.

Tomlins, P. H.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

Tu, Z.

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

van der Meer, F.

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12, 4353–4365 (2004).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
[CrossRef]

van der Schoot, J.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012).
[CrossRef] [PubMed]

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011).
[CrossRef] [PubMed]

van der Steen, A. F. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

van Leenders, G. L. J. H.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

van Leeuwen, T.

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

van Leeuwen, T. G.

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12, 4353–4365 (2004).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9, 227–233 (2003).
[CrossRef]

van Leeuwen, T. G. J. M.

F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
[CrossRef]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

van Noorden, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

van Soest, G.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

Vermeer, K. A.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2, 1743–1756 (2011).
[CrossRef] [PubMed]

Vermes, I.

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008).
[CrossRef] [PubMed]

Wann, L. S.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Warltier, D. C.

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

Wijkstra, H.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

Wu, X. J.

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Xia, Y.

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008).
[CrossRef] [PubMed]

Yadlowsky, M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994).
[CrossRef] [PubMed]

Yamamoto, Y.

Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
[CrossRef]

Yao, Q.

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Yuan, X. C.

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Yura, H. T.

Zhang, Q. Q.

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Zhang, X.

Zhu, S. W.

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Acta Ophthalmologica (1)

Y. Sugata, K. Murakami, M. Ito, T. Shiina, and Y. Yamamoto, “An application of ultrasonic tissue characterization to the diagnosis of cataract,” Acta Ophthalmologica70, 35–39 (1992).
[CrossRef]

Appl. Opt. (1)

Biomed. Opt. Express (1)

BJU International (1)

K. Barwari, D. M. de Bruin, D. J. Faber, T. G. van Leeuwen, J. J. de la Rosette, and M. P. Laguna, “Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study,” BJU International110, E415–E420 (2012).
[CrossRef] [PubMed]

Cardiovasc. Res. (1)

K. B. Sagar, D. H. Agemura, W. D. O’Brien, L. R. Pelc, T. L. Rhyne, L. S. Wann, R. A. Komorowski, and D. C. Warltier, “Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter,” Cardiovasc. Res.24, 447–455 (1990).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9, 227–233 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. Kuc, “Clinical application of an ultrasound attenuation coefficient estimation technique for liver pathology characterization,” IEEE Trans. Biomed. Eng.27, 312–319 (1980).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging24, 1369–1376 (2005).
[CrossRef] [PubMed]

Invest Ophthalmol Vis Sci (3)

J. van der Schoot, K. A. Vermeer, J. F. de Boer, and H. G. Lemij, “The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images,” Invest Ophthalmol Vis Sci53, 2424–2430 (2012).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest Ophthalmol Vis Sci53, 6102–6108 (2012).
[CrossRef] [PubMed]

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest Ophthalmol Vis Sci52, 7738–7748 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15, 025001 (2010).
[CrossRef] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13, 034003 (2008).
[CrossRef] [PubMed]

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15, 011105 (2010).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15, 046029 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15, 066003 (2010).
[CrossRef]

J. Biophoton. (1)

J. Li, C. Chen, B. Chen, Z. Shen, Y. He, Y. Xia, and S. Liu, “Quantitative discrimination of NPC cell lines using optical coherence tomography,” J. Biophoton.5, 544–549 (2012).
[CrossRef]

J. Endourol. (1)

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol.25, 311–3115 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Med. Sci. (2)

J. Li, Z. Tu, Z. Shen, Y. Xia, Y. He, S. Liu, and C. Chen, “Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography,” Lasers Med. Sci.28, 621–625 (2013).
[CrossRef]

F. van der Meer, D. Faber, M. Aalders, A. Poot, I. Vermes, and T. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25, 259–267 (2010).
[CrossRef]

Opt. Express (2)

Phys. Med. Biol. (2)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering,” Phys. Med. Biol.39, 1705–1720 (1994).
[CrossRef] [PubMed]

Q. Q. Zhang, X. J. Wu, T. Tang, S. W. Zhu, Q. Yao, B. Z. Gao, and X. C. Yuan, “Quantitative analysis of rectal cancer by spectral domain optical coherence tomography,” Phys. Med. Biol.57, 10 (2012).

Proc. SPIE (2)

F. J. van der Meer, D. J. Faber, M. C. Aalders, J. Perree, and T. G. J. M. van Leeuwen, “Detection of apoptosis by optical coherence tomography (OCT),” Proc. SPIE4251, 165–169 (2001).
[CrossRef]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” Proc. SPIE8209, 8209U (2012).

Ultrasonic Imaging (1)

G. Berger, P. Laugier, J. C. Thalabard, and J. Perrin, “Global breast attenuation: Control group and benign breast diseases,” Ultrasonic Imaging12, 47–57 (1990).

Ultrasound Med. Biol. (1)

D. I. Hughes and F. A. Duck, “Automatic attenuation compensation for ultrasonic imaging,” Ultrasound Med. Biol.23, 651–664 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simulated thick phantom, with its front surface moved back in steps of 400 μm. (a) The simulated OCT signal shows a shifted response. (b) The accuracy of the attenuation coefficients that were estimated by Eq. (17) is not affected by moving the object in axial direction.

Fig. 2
Fig. 2

(a) Simulated OCT signals and (b) estimated attenuation coefficients (Eq. (17)) for uniform and layered phantoms with various attenuation coefficients. Solid lines: Simulated thick phantoms, with attenuation coefficients of 1 mm−1, 2 mm−1, 5 mm−1 and 10 mm−1. Different attenuation coefficients result in different slopes in the OCT signal. The proposed method is capable of depth-resolved estimation of the attenuation coefficient from the OCT signal with high accuracy. Dashed line: Simulated 5-layer phantom with an individual layer thickness of 360 μm and attenuation coefficients of 0.5 mm−1, 1 mm−1, 2 mm−1, 5 mm−1 and 10 mm−1. The proposed method can accurately estimated the attenuation coefficient of the various layers.

Fig. 3
Fig. 3

(a) OCT image data from uniform phantoms. (b) Corresponding attenuation coefficient image. The proposed method transforms every pixel in the OCT image from a value expressed in arbitrary units into an attenuation coefficient with a physical unit of measurement.

Fig. 4
Fig. 4

Attenuation coefficients determined by fitting an exponential curve to the OCT data (205 B-scans per phantom; the curve was fitted over 0.5 mm). The dashed line is a robust fit (with bisquare weights) of the linear model log(yi) = log(bxi) + εi.

Fig. 5
Fig. 5

Depth profiles (blue lines) and fits (thick red lines) for OCT data (left) and attenuation coefficient images (right) for a uniform phantom with 0.25 w% TiO2. The fits were based on the data corresponding to the thick red lines (depth range of 0.25 mm).

Fig. 6
Fig. 6

Attenuation coefficients determined by fitting an exponential curve to the OCT data (blue) and by the proposed method (red), over a depth of 0.25 mm. The circles denote the measurements and the vertical lines indicate the 95% confidence interval. The dashed lines are robust fits (with bisquare weights) of the model log(yi) = log(a + bxi) +εi.

Fig. 7
Fig. 7

Layered phantom depth profiles of the OCT signal (left) and the per-pixel attenuation coefficients estimated by the proposed method (right). The fits were based on the data corresponding to the thick red lines (depth range of 0.15 mm per layer).

Fig. 8
Fig. 8

Estimated attenuation coefficients for the layered phantom by exponential fits (in blue) and the presented method (in red), over a depth of 0.15 mm for each layer. The circles denote the measurements and the vertical lines indicate the 95% confidence interval. The dashed lines are robust fits (with bisquare weights) of the model log(yi) = log(a + bxi)+εi.

Fig. 9
Fig. 9

In-vivo retinal scan of a normal subject. The OCT scan (left) was transformed according to the manufacturer’s recommendations for display purposes only ( 4). Areas with OCT shadowing due to blood vessels are indicated by blue arrows. The attenuation coefficient (right) of deeper layers at these locations is largely unaffected.

Tables (3)

Tables Icon

Table 1 Attenuation coefficients estimated by the OCT slope method (Eq. (3)) from the uniform phantoms (205 B-scans per phantom, fitted over 0.5 mm) for different TiO2 weight concentrations. The large amount of data available for the fitting procedure resulted in a standard error smaller than 0.02 mm−1 for all phantoms.

Tables Icon

Table 2 Attenuation coefficients (standard error) estimated by the OCT slope method (Eq. (3)) and the proposed method (Eq. (17)) from the uniform phantoms (fitted over 0.25 mm) for different TiO2 weight concentrations.

Tables Icon

Table 3 Estimated attenuation coefficients from the layered phantom.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

L ( z ) = L 0 e μ z ,
I ( z ) e 2 μ z .
μ ^ = 1 2 d log ( I ( z ) ) d z ,
d L ( z ) = μ ( z ) L ( z ) d z ,
L ( z ) = L 0 e 0 z μ ( u ) d u .
B ( z ) = α d L d z = α μ ( z ) L ( z ) = α μ ( z ) L 0 e 0 z μ ( u ) d u .
S ( z ) = B ( z ) e 0 z μ ( u ) d u = α μ ( z ) L 0 e 2 0 z μ ( u ) d u ,
I ( z ) = β S ( z ) = α β μ ( z ) L 0 e 2 0 z μ ( u ) d u ,
I ( z ) d z = α β L 0 μ ( z ) e 2 0 z μ ( u ) d u d z
= α β L 0 2 e 2 0 z μ ( u ) d u + C
= I ( z ) 2 μ ( z ) + C
z I ( u ) d u = I ( u ) 2 μ ( u ) + C | z = I ( z ) 2 μ ( z )
μ ( z ) = I ( z ) 2 z I ( u ) d u I ( z ) 2 z D I ( u ) d u
μ [ i ] = 1 Δ u v μ ( z ) d z = 1 Δ u v I ( y ) 2 y I ( z ) d z d y .
μ [ i ] = 1 2 Δ u v I ( u ) y v I ( u ) d z + v I ( z ) d z d y
= 1 2 Δ u v I ( u ) ( v y ) I ( u ) + A d y ,
μ [ i ] = 1 2 Δ log ( 1 + Δ I ( u ) A ) = 1 2 Δ log ( 1 + I [ i ] i + 1 I [ i ] ) .
μ [ i ] I [ i ] 2 Δ i + 1 I [ i ] .
I ( z ) = U ( z ) N ( z ) S ( z ) .
I ( z ) e 2 μ z ( z z 0 2 z R ) 2 + 1 .
μ ^ = 1 2 d log ( I ( z ) ) d z = μ + z z 0 ( z z 0 ) 2 + 4 z R 2 .

Metrics