Abstract

We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm2 and wide field 10 x 10 mm2 volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Robinson, “Prevalence of Asymptomatic Eye Disease Prévalence des maladies oculaires asymptomatiques,” Revue Canadienne D'Optométrie65, 175 (2003).
  2. H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
    [CrossRef] [PubMed]
  3. F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
    [CrossRef] [PubMed]
  4. R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
    [CrossRef] [PubMed]
  5. S. Rowe, C. H. MacLean, and P. G. Shekelle, “Preventing visual loss from chronic eye disease in primary care: scientific review,” JAMA291(12), 1487–1495 (2004).
    [CrossRef] [PubMed]
  6. E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
    [CrossRef] [PubMed]
  7. S. Garg and R. M. Davis, “Diabetic retinopathy screening update,” Clin. Diabetes27(4), 140–145 (2009).
    [CrossRef]
  8. D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  9. J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd Edition (Slack Inc., Thorofare, NJ, 2012).
  10. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
    [CrossRef] [PubMed]
  11. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
    [CrossRef] [PubMed]
  12. J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
    [CrossRef]
  13. W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
    [CrossRef]
  14. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).
  15. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express15(5), 2445–2453 (2007).
    [CrossRef] [PubMed]
  16. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007).
    [CrossRef] [PubMed]
  17. J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).
  18. K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).
  19. J. J. Sun, S. G. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. K. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010).
    [CrossRef] [PubMed]
  20. D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
    [CrossRef] [PubMed]
  21. R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J Biophotonics (2013).
  22. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  23. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
    [CrossRef] [PubMed]
  24. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
    [CrossRef] [PubMed]
  25. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
    [CrossRef] [PubMed]
  26. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  27. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
    [CrossRef] [PubMed]
  28. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
    [CrossRef] [PubMed]
  29. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
    [CrossRef] [PubMed]
  30. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997).
    [CrossRef] [PubMed]
  31. American National Standard for Safe Use of Lasers, ANSI Z136.1 (American National Standards Institute, New York, 2007).
  32. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
    [CrossRef] [PubMed]
  33. B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
    [CrossRef] [PubMed]
  34. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]

2013 (3)

2012 (2)

2011 (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (1)

S. Garg and R. M. Davis, “Diabetic retinopathy screening update,” Clin. Diabetes27(4), 140–145 (2009).
[CrossRef]

2008 (5)

R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
[CrossRef] [PubMed]

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

2005 (3)

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

2004 (3)

S. Rowe, C. H. MacLean, and P. G. Shekelle, “Preventing visual loss from chronic eye disease in primary care: scientific review,” JAMA291(12), 1487–1495 (2004).
[CrossRef] [PubMed]

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
[CrossRef] [PubMed]

1994 (1)

F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Akiba, M.

Azen, S. P.

R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
[CrossRef] [PubMed]

Bancu, M. G.

Bardenstein, D. S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Barry, S.

Baumann, B.

Bernstein, J. J.

Bock, R.

Boppart, S. A.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

Brennan, N. A.

Burnes, D. L.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

Cable, A. E.

Cense, B.

Chahwan, A.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Chaney, E. J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Chang, S.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, N.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Chen, T. C.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

Chen, Y.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express15(5), 2445–2453 (2007).
[CrossRef] [PubMed]

Chen, Z. P.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

Choe, S. W.

Choi, W.

Condit, J. C.

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

Davis, R. M.

S. Garg and R. M. Davis, “Diabetic retinopathy screening update,” Clin. Diabetes27(4), 140–145 (2009).
[CrossRef]

de Boer, J. F.

de Bruin, D. M.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

Deneen, J.

R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
[CrossRef] [PubMed]

Drexler, W.

Duan, C.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Duker, J. S.

Esmaili, D. D.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

Fan, L.

Flotte, T.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ford, D.

F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
[CrossRef] [PubMed]

Fu, L.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express15(5), 2445–2453 (2007).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Garg, S.

S. Garg and R. M. Davis, “Diabetic retinopathy screening update,” Clin. Diabetes27(4), 140–145 (2009).
[CrossRef]

Goldenberg, A. A.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Gong, Z.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Gordon, M. L.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Gregory, K.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Guo, S. G.

Hee, M. R.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hertz, P. R.

Hong, Y. J.

Hornegger, J.

Hoshino, K.

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

Huang, D.

Izatt, J. A.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Jayaraman, V.

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Jia, H.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Jiang, J.

Jung, W.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

Jung, W. G.

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

Keeffe, J. E.

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

Kemp, N. J.

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

Kim, J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Kim, K. H.

Kotlanka, R.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Kraus, M. F.

Kumar, K.

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

Le, A.

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

Lee, T. W.

Lin, C. P.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liou, H.-L.

Liu, J. J.

Liu, L.

Loewenstein, J.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

Lu, C. D.

Ma, J. S.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

MacLean, C. H.

S. Rowe, C. H. MacLean, and P. G. Shekelle, “Preventing visual loss from chronic eye disease in primary care: scientific review,” JAMA291(12), 1487–1495 (2004).
[CrossRef] [PubMed]

Maguluri, G. N.

Makita, S.

Mayer, M. A.

McCarty, C.

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

McCormick, D. T.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

McElroy, A.

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

Milner, T. E.

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

Miura, M.

Mohanty, S. A.

R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
[CrossRef] [PubMed]

Nassif, N.

Olivo, M.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Park, B. H.

Pierce, M. C.

Piyawattanametha, W.

Potsaid, B.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett.38(3), 338–340 (2013).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Povazay, B.

Premachandran, C. S.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Puliafito, C. A.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Quigley, H. A.

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
[CrossRef] [PubMed]

F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
[CrossRef] [PubMed]

Radhakrishnan, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Rait, J. L.

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

Robinson, B. E.

B. E. Robinson, “Prevalence of Asymptomatic Eye Disease Prévalence des maladies oculaires asymptomatiques,” Revue Canadienne D'Optométrie65, 175 (2003).

Rogomentich, F. J.

Rollins, A. M.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Roth, J. E.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Rowe, S.

S. Rowe, C. H. MacLean, and P. G. Shekelle, “Preventing visual loss from chronic eye disease in primary care: scientific review,” JAMA291(12), 1487–1495 (2004).
[CrossRef] [PubMed]

Samuelson, S.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Sattmann, H.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shekelle, P. G.

S. Rowe, C. H. MacLean, and P. G. Shekelle, “Preventing visual loss from chronic eye disease in primary care: scientific review,” JAMA291(12), 1487–1495 (2004).
[CrossRef] [PubMed]

Sheppard, C. J. R.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Singh, J.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Sorg, B. S.

Stewart, C. N.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sun, J. J.

Swanson, E.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Taylor, H. R.

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

Teo, J. H. S.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Tielsch, J. M.

F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
[CrossRef] [PubMed]

Tien, N. C.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

Unterhuber, A.

Varma, R.

R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
[CrossRef] [PubMed]

Vitkin, I. A.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Vu, H. T.

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

Wang, D.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Wang, F.

F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
[CrossRef] [PubMed]

Wang, L.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

Wang, X.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Westphal, V.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Whelton, P. K.

F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
[CrossRef] [PubMed]

Wilder-Smith, P.

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

Wilson, B. C.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Wong, E. Y.

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

Wu, J.

R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
[CrossRef] [PubMed]

Wu, L.

Wu, M. C.

Xie, H.

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

Xie, H. K.

Xu, Y.

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

Yamanari, M.

Yang, V. X. D.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Yeow, J. T. W.

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Yun, S. H.

Zhang, J.

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

Zhang, X.

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

Appl. Phys. Lett. (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. P. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett.88, 163901 (2006).

Arch. Intern. Med. (1)

F. Wang, D. Ford, J. M. Tielsch, H. A. Quigley, and P. K. Whelton, “Undetected eye disease in a primary care clinic population,” Arch. Intern. Med.154(16), 1821–1828 (1994).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
[CrossRef] [PubMed]

Clin. Diabetes (1)

S. Garg and R. M. Davis, “Diabetic retinopathy screening update,” Clin. Diabetes27(4), 140–145 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. P. Chen, D. T. McCormick, and N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE J. Sel. Top. Quantum Electron.11(4), 806–810 (2005).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49(10), 4545–4552 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

D. Wang, L. Fu, X. Wang, Z. Gong, S. Samuelson, C. Duan, H. Jia, J. S. Ma, and H. Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt.18(8), 086005 (2013).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

J. Singh, J. H. S. Teo, Y. Xu, C. S. Premachandran, N. Chen, R. Kotlanka, M. Olivo, and C. J. R. Sheppard, “A two axes scanning SOI MEMS micromirror for endoscopic bioimaging,” J. Micromech. Microeng.18, 025001 (2008).

J. Opt. A, Pure Appl. Opt. (1)

K. Kumar, J. C. Condit, A. McElroy, N. J. Kemp, K. Hoshino, T. E. Milner, and X. Zhang, “Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror,” J. Opt. A, Pure Appl. Opt.10, 044013 (2008).

J. Opt. Soc. Am. A (1)

JAMA (1)

S. Rowe, C. H. MacLean, and P. G. Shekelle, “Preventing visual loss from chronic eye disease in primary care: scientific review,” JAMA291(12), 1487–1495 (2004).
[CrossRef] [PubMed]

Med. Care (1)

R. Varma, S. A. Mohanty, J. Deneen, J. Wu, S. P. Azen, and LALES Group, “Burden and predictors of undetected eye disease in Mexican-Americans: the Los Angeles Latino Eye Study,” Med. Care46(5), 497–506 (2008).
[CrossRef] [PubMed]

Ophthalmology (1)

E. Y. Wong, J. E. Keeffe, J. L. Rait, H. T. Vu, A. Le, C. McCarty, and H. R. Taylor, “Detection of undiagnosed glaucoma by eye health professionals,” Ophthalmology111(8), 1508–1514 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

J. J. Sun, S. G. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. K. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express15(5), 2445–2453 (2007).
[CrossRef] [PubMed]

K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

Revue Canadienne D'Optométrie (1)

B. E. Robinson, “Prevalence of Asymptomatic Eye Disease Prévalence des maladies oculaires asymptomatiques,” Revue Canadienne D'Optométrie65, 175 (2003).

Science (1)

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

J. T. W. Yeow, V. X. D. Yang, A. Chahwan, M. L. Gordon, B. Qi, I. A. Vitkin, B. C. Wilson, and A. A. Goldenberg, “Micromachined 2-D scanner for 3-D optical coherence tomography,” Sens. Actuators A Phys.117(2), 331–340 (2005).
[CrossRef]

Other (3)

R. L. Shelton, W. Jung, S. I. Sayegh, D. T. McCormick, J. Kim, and S. A. Boppart, “Optical coherence tomography for advanced screening in the primary care office,” J Biophotonics (2013).

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd Edition (Slack Inc., Thorofare, NJ, 2012).

American National Standard for Safe Use of Lasers, ANSI Z136.1 (American National Standards Institute, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Photographs of the (A-B) power grip style and (C-D) camcorder style designs. The camcorder design has a nylon strap (not visible in the photographs) which wraps around the back of the operator's hand. The optical components inside both enclosures are identical.

Fig. 2
Fig. 2

Handheld OCT instrument internal optical layout and unfolded optical components showing the (A) OCT 1060 nm optical path, (B) iris camera visible optical path, and (C) fixation target visible optical path.

Fig. 3
Fig. 3

Swept Source OCT system at 1060 nm using a VCSEL swept source light source. A calibration MZI is used to generate an optical clock signal. MEMS scanning mirror (SM). Dichroic mirror (DM). Polarization controller (PC). Dispersion compensation glass (DC).

Fig. 4
Fig. 4

6 x 6 mm2, 1400 x 350 A-scan sinusoidally raster scanned volumes of the optic nerve head acquired in 1.4 seconds each. (A) OCT fundus of the horizontal sinusoidal raster scan. (B) Indicated cross section. (C) OCT fundus of the vertical sinusoidal raster scan. (D) Indicated cross section. Arrows indicate motion artifacts. Scale bars are not displayed in the sinusoidally scanned directions due to nonlinear spacing. Scale bars are 1 mm.

Fig. 5
Fig. 5

6 x 6 mm2, 350 x 350 A-scan volumes after sinusoid to linear resampling of the volumes in Fig. 4. (A) OCT fundus of linearized horizontal raster scan. (B) Indicated cross section. (C) OCT fundus of linearized vertical raster scan. (D) Indicated cross section. Arrows indicate motion artifacts. Scale bars are 1 mm.

Fig. 6
Fig. 6

Motion-corrected 6 x 6 mm2, 350 x 350 A-scan volume of the optic nerve head generated from two linear raster scanned volumes from Fig. 5. (A) En-face OCT fundus image. (B-C) Horizontal and vertical cross sectional images indicated by the colored lines. Scale bars are 1 mm.

Fig. 7
Fig. 7

Motion-corrected 6 x 6 mm2, 350 x 350 A-scan volume of the macula generated from two raster scanned volumes acquired in 1.4 seconds per volume. (A) En-face OCT fundus image. (B-C) Horizontal and vertical cross sectional images indicated by the colored lines. Scale bars are 1 mm.

Fig. 8
Fig. 8

Motion-corrected, wide field 10 x 10 mm2, 350 x 350 A-scan volume generated from two raster scanned volumes acquired in 1.4 seconds each. (A) En-face OCT fundus image. (B-D) Color-indicated cross sections on the fundus. (E) Interpolated 3.4 mm diameter circumpapillary scan extracted from motion-corrected volumetric data. Scale bars are 1 mm.

Fig. 9
Fig. 9

(A) High definition, 10 mm long 2000 A-scan image generated by repeatedly scanning the same position 25 times in 0.57 seconds and then registering and averaging the B-scans. (B) Enlarged image near the optic nerve head. (C) Enlarged image of the foveal region. Scale bars are 1 mm.

Fig. 10
Fig. 10

Full axial range, high definition 6 mm long 2000 A-scan images of the macula obtained from 25 registered and averaged repeated B-scans. (A-C) The images show the retina at various depths and demonstrate the 3.08 mm imaging range in tissue. Notice the lack of severe sensitivity roll-off at deeper depths enabled by the VCSEL SS-OCT light source. Scale bars are 1 mm.

Tables (1)

Tables Icon

Table 1 Comparison of Commercial Handheld OCT Systems to the Prototype Handheld OCT System

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ diff = tan 1 ( 2.45 λ 0 π d m )2.45 λ 0 π d m
NRS= 2 θ m / 2 θ diff = π θ m d m / 2.45 λ 0

Metrics