Abstract

Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77μm(1024~1088 cm−1) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
    [PubMed]
  2. W. Zhang, R. Liu, W. Zhang, H. Jia, and K. Xu, “Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing,” Biomed. Opt. Express4(6), 789–802 (2013).
    [CrossRef] [PubMed]
  3. T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
    [PubMed]
  4. P. Roychoudhury, L. M. Harvey, and B. McNeil, “At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy,” Anal. Chim. Acta561(1-2), 218–224 (2006).
    [CrossRef]
  5. E. Diessel, P. Kamphaus, K. Grothe, R. Kurte, U. Damm, and H. M. Heise, “Nanoliter serum sample analysis by mid-infrared spectroscopy for minimally invasive blood-glucose monitoring,” Appl. Spectrosc.59(4), 442–451 (2005).
    [CrossRef] [PubMed]
  6. C. Charlton, “Quantum cascade lasers for Mid-Infrared chemical sensing”, P45–P47, (2005).
  7. A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express4(4), 520–530 (2013).
    [CrossRef] [PubMed]
  8. “American National Standard for Safe Use of Lasers,” ANSI Standard Z136.1–2007 (R2007).
  9. G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt.3(3), 267–280 (1998).
    [CrossRef] [PubMed]
  10. P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4(22), 5671–5677 (2002).
    [CrossRef]
  11. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012).
    [CrossRef] [PubMed]
  12. J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013).
    [CrossRef] [PubMed]
  13. M. Brandstetter and B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem.170, 189–195 (2012).
    [CrossRef]
  14. M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
    [CrossRef]
  15. A. Lambrecht, T. Beyer, K. Hebestreit, R. Mischler, and W. Petrich, “Continuous Glucose Monitoring by Means of Fiber-Based, Mid-Infrared Laser Spectroscopy,” Appl. Spectrosc.60(7), 729–736 (2006).
    [CrossRef] [PubMed]
  16. S. Liakat, K. A. Bors, T. Y. Huang, A. P. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express4(7), 1083–1090 (2013).
    [CrossRef] [PubMed]
  17. E. Cengiz and E. W. V. Tamborlane, “A tale of two compartments: interstitial versus blood glucose monitoring,” Diabetes Technol. Ther.11(S1), S11–S16 (2009).
  18. W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005).
    [CrossRef] [PubMed]
  19. H. M. Heise, R. Marbach, Th. Koschinsky, and F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectrosc.48(1), 85–95 (1994).
    [CrossRef]
  20. R. Vonach, J. Buschmann, R. Falkowski, R. Schindler, B. Lendl, and R. Kellner, “Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood,” Appl. Spectrosc.52(6), 820–822 (1998).
    [CrossRef]
  21. Membrane filtration products, INC., http://www.membrane-mfpi.com/home/tech-notes .
  22. U. Damm, V. R. Kondepati, and H. M. Heise, “Continuous reagent-free bed-side monitoring of glucose in biofluids using infrared spectrometry and micro-dialysis,” Vib. Spectrosc.43(1), 184–192 (2007).
    [CrossRef]
  23. H. M. Heise, G. Voigt, P. Lampen, L. Küpper, S. Rudloff, and G. Werner, “Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy,” Appl. Spectrosc.55(4), 434–443 (2001).
    [CrossRef]
  24. M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to noninvasive glucose measurement,” Spectrochim. Acta [A]85(1), 61–65 (2012).
    [CrossRef]
  25. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
    [CrossRef] [PubMed]
  26. S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 ) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun.241(1-3), 173–178 (2004).
    [CrossRef]
  27. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett.26(18), 1430–1432 (2001).
    [CrossRef] [PubMed]
  28. S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun.171(1-3), 171–176 (1999).
    [CrossRef]
  29. H. Hazama, H. Kutsumi, and K. Awazu, “Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation,” Opt. Photon. J.3(044A), 8–13 (2013).
    [CrossRef]
  30. M. Tacke, “Lead-salt lasers,” Philos. Trans. Roy. Soc. London. Ser. A.359(1780), 547–566 (2001).
    [CrossRef]
  31. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
    [CrossRef]
  32. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
    [CrossRef]
  33. M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
    [CrossRef] [PubMed]
  34. Y. Gotshal, I. Adam, and A. Katzir, “Glucose measurements in solutions using fiber optic evanescent wave spectroscopy and tunable CO2 laser,” Proc. SPIE3262, 192–196 (1998).
    [CrossRef]
  35. Y. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng.41(12), 3319–3323 (2002).
    [CrossRef]
  36. S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
    [PubMed]
  37. Yu S, Li D, Chong H, Sun C, and Xu K, “Tunable mid-infrared laser spectroscopy based on fiber-optic sensor for glucose measurement,” Proc. SPIE 8591, 85910K1–6 (2013).
  38. S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci.2(4), 398–401 (2003).
    [CrossRef]
  39. V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
    [CrossRef]
  40. Y. Raichlin, L. Fel, and A. Katzir, “Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements,” Opt. Lett.28(23), 2297–2299 (2003).
    [CrossRef] [PubMed]
  41. A. Grazia, M. Riccardo, and F. L. Ciaccheri, “Evanescent Wave Absorption Spectroscopy by Means of Bi-tapered Multimode Optical Fibers,” Appl. Spectrosc.52(4), 546–551 (1998).
    [CrossRef]
  42. Y. Raichlin and A. Katzir, “Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared,” Appl. Spectrosc.62(2), 55–72 (2008).
    [CrossRef] [PubMed]
  43. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron.31(8), 625–636 (1999).
    [CrossRef]
  44. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
    [CrossRef] [PubMed]
  45. T. Bailey, H. Zisser, and A. Chang, “New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time,” Diabetes Technol. Ther.11(12), 749–755 (2009).
    [CrossRef] [PubMed]
  46. H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
    [CrossRef] [PubMed]

2013 (7)

W. Zhang, R. Liu, W. Zhang, H. Jia, and K. Xu, “Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing,” Biomed. Opt. Express4(6), 789–802 (2013).
[CrossRef] [PubMed]

A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express4(4), 520–530 (2013).
[CrossRef] [PubMed]

J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013).
[CrossRef] [PubMed]

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
[CrossRef]

S. Liakat, K. A. Bors, T. Y. Huang, A. P. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express4(7), 1083–1090 (2013).
[CrossRef] [PubMed]

H. Hazama, H. Kutsumi, and K. Awazu, “Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation,” Opt. Photon. J.3(044A), 8–13 (2013).
[CrossRef]

S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
[PubMed]

2012 (3)

X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012).
[CrossRef] [PubMed]

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to noninvasive glucose measurement,” Spectrochim. Acta [A]85(1), 61–65 (2012).
[CrossRef]

M. Brandstetter and B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem.170, 189–195 (2012).
[CrossRef]

2011 (2)

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

2009 (4)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

E. Cengiz and E. W. V. Tamborlane, “A tale of two compartments: interstitial versus blood glucose monitoring,” Diabetes Technol. Ther.11(S1), S11–S16 (2009).

T. Bailey, H. Zisser, and A. Chang, “New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time,” Diabetes Technol. Ther.11(12), 749–755 (2009).
[CrossRef] [PubMed]

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

2008 (2)

Y. Raichlin and A. Katzir, “Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared,” Appl. Spectrosc.62(2), 55–72 (2008).
[CrossRef] [PubMed]

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

2007 (1)

U. Damm, V. R. Kondepati, and H. M. Heise, “Continuous reagent-free bed-side monitoring of glucose in biofluids using infrared spectrometry and micro-dialysis,” Vib. Spectrosc.43(1), 184–192 (2007).
[CrossRef]

2006 (2)

A. Lambrecht, T. Beyer, K. Hebestreit, R. Mischler, and W. Petrich, “Continuous Glucose Monitoring by Means of Fiber-Based, Mid-Infrared Laser Spectroscopy,” Appl. Spectrosc.60(7), 729–736 (2006).
[CrossRef] [PubMed]

P. Roychoudhury, L. M. Harvey, and B. McNeil, “At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy,” Anal. Chim. Acta561(1-2), 218–224 (2006).
[CrossRef]

2005 (3)

2004 (1)

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 ) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun.241(1-3), 173–178 (2004).
[CrossRef]

2003 (2)

Y. Raichlin, L. Fel, and A. Katzir, “Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements,” Opt. Lett.28(23), 2297–2299 (2003).
[CrossRef] [PubMed]

S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci.2(4), 398–401 (2003).
[CrossRef]

2002 (2)

P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4(22), 5671–5677 (2002).
[CrossRef]

Y. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng.41(12), 3319–3323 (2002).
[CrossRef]

2001 (3)

1999 (3)

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun.171(1-3), 171–176 (1999).
[CrossRef]

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
[PubMed]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron.31(8), 625–636 (1999).
[CrossRef]

1998 (5)

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt.3(3), 267–280 (1998).
[CrossRef] [PubMed]

R. Vonach, J. Buschmann, R. Falkowski, R. Schindler, B. Lendl, and R. Kellner, “Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood,” Appl. Spectrosc.52(6), 820–822 (1998).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
[CrossRef]

Y. Gotshal, I. Adam, and A. Katzir, “Glucose measurements in solutions using fiber optic evanescent wave spectroscopy and tunable CO2 laser,” Proc. SPIE3262, 192–196 (1998).
[CrossRef]

A. Grazia, M. Riccardo, and F. L. Ciaccheri, “Evanescent Wave Absorption Spectroscopy by Means of Bi-tapered Multimode Optical Fibers,” Appl. Spectrosc.52(4), 546–551 (1998).
[CrossRef]

1994 (1)

1987 (1)

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Adam, I.

Y. Gotshal, I. Adam, and A. Katzir, “Glucose measurements in solutions using fiber optic evanescent wave spectroscopy and tunable CO2 laser,” Proc. SPIE3262, 192–196 (1998).
[CrossRef]

Albrecht, H.

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

Antoniou, C.

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

Artjushenko, V.

V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
[CrossRef]

Awazu, K.

H. Hazama, H. Kutsumi, and K. Awazu, “Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation,” Opt. Photon. J.3(044A), 8–13 (2013).
[CrossRef]

Bailey, T.

T. Bailey, H. Zisser, and A. Chang, “New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time,” Diabetes Technol. Ther.11(12), 749–755 (2009).
[CrossRef] [PubMed]

Baskov, P.

V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
[CrossRef]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Beyer, T.

Blank, T. B.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
[PubMed]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Bors, K.

Bors, K. A.

Brandstetter, M.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
[CrossRef]

M. Brandstetter and B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem.170, 189–195 (2012).
[CrossRef]

Braxmaier, C.

Buschmann, J.

Calentine, C.

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

Calzaferri, G.

S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci.2(4), 398–401 (2003).
[CrossRef]

Carter, W.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Cengiz, E.

E. Cengiz and E. W. V. Tamborlane, “A tale of two compartments: interstitial versus blood glucose monitoring,” Diabetes Technol. Ther.11(S1), S11–S16 (2009).

Chang, A.

T. Bailey, H. Zisser, and A. Chang, “New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time,” Diabetes Technol. Ther.11(12), 749–755 (2009).
[CrossRef] [PubMed]

Charlton, C.

C. Charlton, “Quantum cascade lasers for Mid-Infrared chemical sensing”, P45–P47, (2005).

Ciaccheri, F. L.

Clarke, W. L.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Cox, D.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Damm, U.

U. Damm, V. R. Kondepati, and H. M. Heise, “Continuous reagent-free bed-side monitoring of glucose in biofluids using infrared spectrometry and micro-dialysis,” Vib. Spectrosc.43(1), 184–192 (2007).
[CrossRef]

E. Diessel, P. Kamphaus, K. Grothe, R. Kurte, U. Damm, and H. M. Heise, “Nanoliter serum sample analysis by mid-infrared spectroscopy for minimally invasive blood-glucose monitoring,” Appl. Spectrosc.59(4), 442–451 (2005).
[CrossRef] [PubMed]

Dekorsy, D.

Diessel, E.

Drummond, J. R.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
[CrossRef]

Endo, H.

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

Faist, J.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Falkowski, R.

Fel, L.

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Fomichova, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Fried, A.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
[CrossRef]

Gable, J.

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

Garidel, P.

P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4(22), 5671–5677 (2002).
[CrossRef]

Genner, A.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Glaus, S.

S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci.2(4), 398–401 (2003).
[CrossRef]

Gmachl, C. F.

Gonder-Frederick, L. A.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Gotshal, Y.

Y. Gotshal, I. Adam, and A. Katzir, “Glucose measurements in solutions using fiber optic evanescent wave spectroscopy and tunable CO2 laser,” Proc. SPIE3262, 192–196 (1998).
[CrossRef]

Grazia, A.

Gretz, N.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Gries, F. A.

Grob, U.

J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013).
[CrossRef] [PubMed]

Grothe, K.

Guo, X.

Gupta, B. D.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron.31(8), 625–636 (1999).
[CrossRef]

Haidar, S.

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 ) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun.241(1-3), 173–178 (2004).
[CrossRef]

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun.171(1-3), 171–176 (1999).
[CrossRef]

Harvey, L. M.

P. Roychoudhury, L. M. Harvey, and B. McNeil, “At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy,” Anal. Chim. Acta561(1-2), 218–224 (2006).
[CrossRef]

Hayashi, T.

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

Hazama, H.

H. Hazama, H. Kutsumi, and K. Awazu, “Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation,” Opt. Photon. J.3(044A), 8–13 (2013).
[CrossRef]

Hebestreit, K.

Heise, H. M.

Heise, T.

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

Henry, B.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
[CrossRef]

Herrmann, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Hibi, K.

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

Huang, T. Y.

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Ito, H.

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 ) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun.241(1-3), 173–178 (2004).
[CrossRef]

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun.171(1-3), 171–176 (1999).
[CrossRef]

Jansen, J. A.

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt.3(3), 267–280 (1998).
[CrossRef] [PubMed]

Jax, T.

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

Jia, H.

Jungbauer, C.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
[CrossRef]

Kamphaus, P.

Katzir, A.

Y. Raichlin and A. Katzir, “Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared,” Appl. Spectrosc.62(2), 55–72 (2008).
[CrossRef] [PubMed]

Y. Raichlin, L. Fel, and A. Katzir, “Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements,” Opt. Lett.28(23), 2297–2299 (2003).
[CrossRef] [PubMed]

Y. Gotshal, I. Adam, and A. Katzir, “Glucose measurements in solutions using fiber optic evanescent wave spectroscopy and tunable CO2 laser,” Proc. SPIE3262, 192–196 (1998).
[CrossRef]

Kellner, R.

Khijwania, S. K.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron.31(8), 625–636 (1999).
[CrossRef]

Kondepati, V. R.

U. Damm, V. R. Kondepati, and H. M. Heise, “Continuous reagent-free bed-side monitoring of glucose in biofluids using infrared spectrometry and micro-dialysis,” Vib. Spectrosc.43(1), 184–192 (2007).
[CrossRef]

Koschinsky, Th.

Kottmann, J.

J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013).
[CrossRef] [PubMed]

Kovalchuk, E. V.

Küpper, L.

Kurte, R.

Kutsumi, H.

H. Hazama, H. Kutsumi, and K. Awazu, “Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation,” Opt. Photon. J.3(044A), 8–13 (2013).
[CrossRef]

Kuzmicheva, G.

V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
[CrossRef]

Lademann, J.

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

Lambrecht, A.

Lampen, P.

Lendl, B.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
[CrossRef]

M. Brandstetter and B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem.170, 189–195 (2012).
[CrossRef]

R. Vonach, J. Buschmann, R. Falkowski, R. Schindler, B. Lendl, and R. Kellner, “Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood,” Appl. Spectrosc.52(6), 820–822 (1998).
[CrossRef]

Li, D. C.

S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
[PubMed]

Liakat, S.

Liang, D.

Y. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng.41(12), 3319–3323 (2002).
[CrossRef]

Lim, G.

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

Liu, R.

Lucassen, G. W.

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt.3(3), 267–280 (1998).
[CrossRef] [PubMed]

Lvovsky, A. I.

Ma, Y.

Y. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng.41(12), 3319–3323 (2002).
[CrossRef]

Malin, S. F.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
[PubMed]

Mandelis, A.

Mäntele, W.

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to noninvasive glucose measurement,” Spectrochim. Acta [A]85(1), 61–65 (2012).
[CrossRef]

Marbach, R.

Martin, W. B.

McNeil, B.

P. Roychoudhury, L. M. Harvey, and B. McNeil, “At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy,” Anal. Chim. Acta561(1-2), 218–224 (2006).
[CrossRef]

Meinke, M.

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

Michel, A. P.

Mirov, S.

Mischler, R.

Miyamoto, K.

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 ) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun.241(1-3), 173–178 (2004).
[CrossRef]

Mlynek, J.

Monfre, S. L.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
[PubMed]

Müller, G.

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

Musina, M.

V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
[CrossRef]

Neudecker, S.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Nosek, L.

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

Peters, A.

Petrich, W.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

A. Lambrecht, T. Beyer, K. Hebestreit, R. Mischler, and W. Petrich, “Continuous Glucose Monitoring by Means of Fiber-Based, Mid-Infrared Laser Spectroscopy,” Appl. Spectrosc.60(7), 729–736 (2006).
[CrossRef] [PubMed]

Pleitez, M.

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to noninvasive glucose measurement,” Spectrochim. Acta [A]85(1), 61–65 (2012).
[CrossRef]

Pohl, S. L.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Pucci, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Raichlin, Y.

Y. Raichlin and A. Katzir, “Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared,” Appl. Spectrosc.62(2), 55–72 (2008).
[CrossRef] [PubMed]

Y. Raichlin, L. Fel, and A. Katzir, “Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements,” Opt. Lett.28(23), 2297–2299 (2003).
[CrossRef] [PubMed]

Ren, H.

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

Rey, J. M.

J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013).
[CrossRef] [PubMed]

Riccardo, M.

Richter, H.

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

Roychoudhury, P.

P. Roychoudhury, L. M. Harvey, and B. McNeil, “At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy,” Anal. Chim. Acta561(1-2), 218–224 (2006).
[CrossRef]

Ruchti, T. L.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
[PubMed]

Rudloff, S.

Sakharov, V.

V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
[CrossRef]

Sakharova, T.

V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
[CrossRef]

Schiller, S.

Schindler, R.

Sewell, S.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
[CrossRef]

Sigrist, M. W.

J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013).
[CrossRef] [PubMed]

Sode, K.

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

Sun, C. Y.

S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
[PubMed]

Tacke, M.

M. Tacke, “Lead-salt lasers,” Philos. Trans. Roy. Soc. London. Ser. A.359(1780), 547–566 (2001).
[CrossRef]

Tamborlane, E. W. V.

E. Cengiz and E. W. V. Tamborlane, “A tale of two compartments: interstitial versus blood glucose monitoring,” Diabetes Technol. Ther.11(S1), S11–S16 (2009).

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Thennadil, S. N.

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
[PubMed]

Tsugawa, W.

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

van Veen, G. N. A.

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt.3(3), 267–280 (1998).
[CrossRef] [PubMed]

Venugopalan, R.

Voigt, G.

Volgger, L.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
[CrossRef]

von Lilienfeld-Toal, H.

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to noninvasive glucose measurement,” Spectrochim. Acta [A]85(1), 61–65 (2012).
[CrossRef]

Vonach, R.

Vrancic, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Werner, G.

Wert, B.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
[CrossRef]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Xu, K.

Xu, K. X.

S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
[PubMed]

Yonemori, Y.

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

Yu, S. L.

S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
[PubMed]

Zanghi, E.

Zhang, W.

Zhong, H.

S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
[PubMed]

Zinman, B.

Zisser, H.

T. Bailey, H. Zisser, and A. Chang, “New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time,” Diabetes Technol. Ther.11(12), 749–755 (2009).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

P. Roychoudhury, L. M. Harvey, and B. McNeil, “At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy,” Anal. Chim. Acta561(1-2), 218–224 (2006).
[CrossRef]

Analyst (Lond.) (1)

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (2)

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B110(2), 233–239 (2013).
[CrossRef]

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B67(3), 317–330 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 −11.4 μm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Appl. Spectrosc. (8)

Y. Raichlin and A. Katzir, “Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared,” Appl. Spectrosc.62(2), 55–72 (2008).
[CrossRef] [PubMed]

A. Lambrecht, T. Beyer, K. Hebestreit, R. Mischler, and W. Petrich, “Continuous Glucose Monitoring by Means of Fiber-Based, Mid-Infrared Laser Spectroscopy,” Appl. Spectrosc.60(7), 729–736 (2006).
[CrossRef] [PubMed]

E. Diessel, P. Kamphaus, K. Grothe, R. Kurte, U. Damm, and H. M. Heise, “Nanoliter serum sample analysis by mid-infrared spectroscopy for minimally invasive blood-glucose monitoring,” Appl. Spectrosc.59(4), 442–451 (2005).
[CrossRef] [PubMed]

W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005).
[CrossRef] [PubMed]

H. M. Heise, G. Voigt, P. Lampen, L. Küpper, S. Rudloff, and G. Werner, “Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy,” Appl. Spectrosc.55(4), 434–443 (2001).
[CrossRef]

R. Vonach, J. Buschmann, R. Falkowski, R. Schindler, B. Lendl, and R. Kellner, “Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood,” Appl. Spectrosc.52(6), 820–822 (1998).
[CrossRef]

A. Grazia, M. Riccardo, and F. L. Ciaccheri, “Evanescent Wave Absorption Spectroscopy by Means of Bi-tapered Multimode Optical Fibers,” Appl. Spectrosc.52(4), 546–551 (1998).
[CrossRef]

H. M. Heise, R. Marbach, Th. Koschinsky, and F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectrosc.48(1), 85–95 (1994).
[CrossRef]

Biomed. Opt. Express (4)

Biosens. Bioelectron. (1)

H. Endo, Y. Yonemori, K. Hibi, H. Ren, T. Hayashi, W. Tsugawa, and K. Sode, “Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish,” Biosens. Bioelectron.24(5), 1417–1423 (2009).
[CrossRef] [PubMed]

Clin. Chem. (1)

S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, “Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy,” Clin. Chem.45(9), 1651–1658 (1999).
[PubMed]

Diabetes Care (1)

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care10(5), 622–628 (1987).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (2)

T. Bailey, H. Zisser, and A. Chang, “New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time,” Diabetes Technol. Ther.11(12), 749–755 (2009).
[CrossRef] [PubMed]

E. Cengiz and E. W. V. Tamborlane, “A tale of two compartments: interstitial versus blood glucose monitoring,” Diabetes Technol. Ther.11(S1), S11–S16 (2009).

Inorg. Mater. (1)

V. Artjushenko, P. Baskov, G. Kuzmicheva, M. Musina, V. Sakharov, and T. Sakharova, “Structure and properties of AgCl1-x Brx (x=0.5-0.8) optical fibers,” Inorg. Mater.41(2), 178–181 (2005).
[CrossRef]

J. Biomed. Opt. (2)

M. Meinke, G. Müller, H. Albrecht, C. Antoniou, H. Richter, and J. Lademann, “Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements,” J. Biomed. Opt.13(1), 014021 (2008).
[CrossRef] [PubMed]

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt.3(3), 267–280 (1998).
[CrossRef] [PubMed]

J. Diabetes Sci. Tech. (1)

T. Jax, T. Heise, L. Nosek, J. Gable, G. Lim, and C. Calentine, “Automated near-Continuous glucose monitoring measured in plasma using mid-infrared spectroscopy,” J. Diabetes Sci. Tech.5(2), 345–352 (2011).
[PubMed]

Opt. Commun. (2)

S. Haidar and H. Ito, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun.171(1-3), 171–176 (1999).
[CrossRef]

S. Haidar, K. Miyamoto, and H. Ito, “Generation of tunable mid-IR (5.5-9.3 ) from a 2-μm pumped ZnGeP2 optical parametric oscillator,” Opt. Commun.241(1-3), 173–178 (2004).
[CrossRef]

Opt. Eng. (1)

Y. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng.41(12), 3319–3323 (2002).
[CrossRef]

Opt. Lett. (2)

Opt. Photon. J. (1)

H. Hazama, H. Kutsumi, and K. Awazu, “Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation,” Opt. Photon. J.3(044A), 8–13 (2013).
[CrossRef]

Opt. Quantum Electron. (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron.31(8), 625–636 (1999).
[CrossRef]

Philos. Trans. Roy. Soc. London. Ser. A. (1)

M. Tacke, “Lead-salt lasers,” Philos. Trans. Roy. Soc. London. Ser. A.359(1780), 547–566 (2001).
[CrossRef]

Photochem. Photobiol. Sci. (1)

S. Glaus and G. Calzaferri, “The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study,” Photochem. Photobiol. Sci.2(4), 398–401 (2003).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

P. Garidel, “Mid-FTIR-Microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4(22), 5671–5677 (2002).
[CrossRef]

Proc. SPIE (1)

Y. Gotshal, I. Adam, and A. Katzir, “Glucose measurements in solutions using fiber optic evanescent wave spectroscopy and tunable CO2 laser,” Proc. SPIE3262, 192–196 (1998).
[CrossRef]

Sens. Actuators B Chem. (1)

M. Brandstetter and B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem.170, 189–195 (2012).
[CrossRef]

Sensors (Basel) (1)

J. Kottmann, U. Grob, J. M. Rey, and M. W. Sigrist, “Mid-infrared fiber-coupled photoacoustic sensor for biomedical applications,” Sensors (Basel)13(1), 535–549 (2013).
[CrossRef] [PubMed]

Spectrochim. Acta [A] (1)

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to noninvasive glucose measurement,” Spectrochim. Acta [A]85(1), 61–65 (2012).
[CrossRef]

Spectros. Spect. Anal. (1)

S. L. Yu, D. C. Li, H. Zhong, C. Y. Sun, and K. X. Xu, “[Application of Mid-infrared wavelength tunable laser in glucose determination],” Spectros. Spect. Anal.33(4), 972–976 (2013).
[PubMed]

Vib. Spectrosc. (1)

U. Damm, V. R. Kondepati, and H. M. Heise, “Continuous reagent-free bed-side monitoring of glucose in biofluids using infrared spectrometry and micro-dialysis,” Vib. Spectrosc.43(1), 184–192 (2007).
[CrossRef]

Other (4)

Yu S, Li D, Chong H, Sun C, and Xu K, “Tunable mid-infrared laser spectroscopy based on fiber-optic sensor for glucose measurement,” Proc. SPIE 8591, 85910K1–6 (2013).

Membrane filtration products, INC., http://www.membrane-mfpi.com/home/tech-notes .

C. Charlton, “Quantum cascade lasers for Mid-Infrared chemical sensing”, P45–P47, (2005).

“American National Standard for Safe Use of Lasers,” ANSI Standard Z136.1–2007 (R2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Control schematic of the CO2 laser

Fig. 2
Fig. 2

Different shapes of optic-fiber sensors: (a) cylindrical, (b) semi-circular, (c) double-coiled, (d) triple-coiled, and (e) U-shaped.

Fig. 3
Fig. 3

(a) Laser emission line at 1081 cm−1. The emission line was recorded several times, and the emission wavelength peak did not shift over time. (b) Normalized CO2 laser emission lines and glucose absorption spectrum in PBS solution. The laser emission line was performed using spectrumTM GX I FT-IR spectrometer with resolution of 0.1 cm−1. The glucose absorption spectrum was also recorded by a FT-IR spectrometer in combination with a HATR sensor at resolution of 4 cm−1.

Fig. 4
Fig. 4

Plot of absorbance at 1081 cm−1 vs. Glucoseconcentration for fiber-optic sensors and HATRcell combined with tunable CO2 laser

Fig. 5
Fig. 5

Plot of NEC vs. sample interval time

Fig. 6
Fig. 6

Contrast of the results measured by the laser measurement system and FT-IR spectrometer

Fig. 7
Fig. 7

Logarithmic curve of absorbance vs. glucose concentration in PBS solution, which was obtained by the laser spectroscopy in combination with the fiber-optic ATR sensor

Fig. 8
Fig. 8

Plot of prediction glucose concentration versus reference glucose concentration on Clarke’s error grid. Measured using semi-circle (top left), U-shaped (top right), double-coiled (bottom left) and triple-coiled sensor (bottom right), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A s =ln( I p s / I g s )+ln( I g r / I p r )
σ Allan 2 (λ(n))= 1 2(M1) i1 M1 ( I i+1 (τ) I i (τ)) 2
NEC(τ)= n=1 5 ( 2 σ Allan λ(n) I λ(n) /c P λ(n) )

Metrics