Abstract

Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. van Roessel and A. H. Brand, “Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins,” Nat. Cell Biol.4(1), E15–E20 (2002).
    [CrossRef] [PubMed]
  2. A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol.11(6), 250–257 (2001).
    [CrossRef] [PubMed]
  3. W. T. Dempster, “Principles of microscope illumination and the problem of glare,” J. Opt. Soc. Am.34(12), 695–710 (1944).
    [CrossRef]
  4. L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci.42(255), 167–195 (1896).
    [CrossRef]
  5. E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen Wahrnehmung,” Arch. Für Mikroskopische Anat.9(1), 413–418 (1873).
    [CrossRef]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  7. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
    [CrossRef] [PubMed]
  8. K. Braeckmans, D. Vercauteren, J. Demeester, and S. C. De Smedt, “Nanoscopy and multidimensional optical fluorescence microscopy,” in (Chapman and Hall, 2010).
  9. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
    [CrossRef] [PubMed]
  10. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  11. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  12. N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum.57(6), 1152 (1986).
    [CrossRef]
  13. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004).
    [CrossRef] [PubMed]
  14. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging1(2), 113–122 (1982).
    [CrossRef] [PubMed]
  15. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
    [CrossRef] [PubMed]
  16. M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A.101(17), 6462–6465 (2004).
    [CrossRef] [PubMed]
  17. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
    [CrossRef] [PubMed]
  18. R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers95(5), 322–331 (2011).
    [CrossRef] [PubMed]
  19. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2(5), 1377–1393 (2011).
    [CrossRef] [PubMed]
  20. A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008).
    [CrossRef] [PubMed]
  21. X. Qu, D. Wu, L. Mets, and N. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” in Proceedings of the National Academy of Sciences of the United States of America (2004), pp. 11298–11303.
    [CrossRef]
  22. E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J.102(10), 2391–2400 (2012).
    [CrossRef] [PubMed]
  23. R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
    [CrossRef] [PubMed]
  24. J. L. Johnson and J. R. Taylor, “K-Factor Image Factorization,” in AeroSense’99. International Society for Optics and Photonics (1999), Vol. 3715, pp. 166–174.
  25. G. Pavlovic and A. Tekalp, “Restoration in the presence of multiplicative noise with application to scanned photographic images,” Acoust. Speech. Signal90, 1913–1916 (1990).
  26. A. Toet, “Multiscale contrast enhancement with applications to image fusion,” Opt. Eng.31(5), 1026 (1992).
    [CrossRef]
  27. J. L. Johnson and M. L. Padgett, “PCNN models and applications,” IEEE Trans. Neural Netw.10(3), 480–498 (1999).
    [CrossRef] [PubMed]
  28. J. L. Johnson, M. L. Padgett, and W. A. Friday, “Multiscale image factorization,” Proc. Int. Conf. Neural Networks3, 1465–1468 (1997).
  29. J. L. Johnson and J. R. Taylor, “Image factorization : a new hierarchical decomposition technique,” Opt. Eng.38(9), 1517–1523 (1999).
    [CrossRef]
  30. R. Juskaitis, “Measuring the real point spread function of high numerical aperture microscope objective lense,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, 2006), pp. 239–250.
  31. B. Zhang, J. Zerubia, and J. C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt.46(10), 1819–1829 (2007).
    [CrossRef] [PubMed]
  32. J. R. Janesick, Scientific Charge Coupled Devices (SPIE Press monograph, 2001), pp. 605–419.
  33. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol.185(7), 1135–1148 (2009).
    [CrossRef] [PubMed]
  34. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001).
    [CrossRef] [PubMed]
  35. R. N. Ghosh and W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules,” Biophys. J.66(5), 1301–1318 (1994).
    [CrossRef] [PubMed]
  36. D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
    [CrossRef]
  37. M. D. Abràmoff, J. M. Paulo, and J. R. Sunanda, “Image processing with ImageJ,” Biophotonics Int.11, 36–42 (2004).
  38. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
    [CrossRef] [PubMed]
  39. N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol.183(3), 363–367 (2013).
    [CrossRef] [PubMed]

2013

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol.183(3), 363–367 (2013).
[CrossRef] [PubMed]

2012

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J.102(10), 2391–2400 (2012).
[CrossRef] [PubMed]

2011

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers95(5), 322–331 (2011).
[CrossRef] [PubMed]

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2(5), 1377–1393 (2011).
[CrossRef] [PubMed]

2010

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

2009

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol.185(7), 1135–1148 (2009).
[CrossRef] [PubMed]

2008

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

2007

2006

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

2004

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004).
[CrossRef] [PubMed]

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A.101(17), 6462–6465 (2004).
[CrossRef] [PubMed]

M. D. Abràmoff, J. M. Paulo, and J. R. Sunanda, “Image processing with ImageJ,” Biophotonics Int.11, 36–42 (2004).

2003

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

2002

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

P. van Roessel and A. H. Brand, “Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins,” Nat. Cell Biol.4(1), E15–E20 (2002).
[CrossRef] [PubMed]

2001

A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol.11(6), 250–257 (2001).
[CrossRef] [PubMed]

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

1999

J. L. Johnson and M. L. Padgett, “PCNN models and applications,” IEEE Trans. Neural Netw.10(3), 480–498 (1999).
[CrossRef] [PubMed]

J. L. Johnson and J. R. Taylor, “Image factorization : a new hierarchical decomposition technique,” Opt. Eng.38(9), 1517–1523 (1999).
[CrossRef]

1995

D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
[CrossRef]

1994

R. N. Ghosh and W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules,” Biophys. J.66(5), 1301–1318 (1994).
[CrossRef] [PubMed]

1992

A. Toet, “Multiscale contrast enhancement with applications to image fusion,” Opt. Eng.31(5), 1026 (1992).
[CrossRef]

1991

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

1990

G. Pavlovic and A. Tekalp, “Restoration in the presence of multiplicative noise with application to scanned photographic images,” Acoust. Speech. Signal90, 1913–1916 (1990).

1986

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum.57(6), 1152 (1986).
[CrossRef]

1982

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging1(2), 113–122 (1982).
[CrossRef] [PubMed]

1944

1896

L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci.42(255), 167–195 (1896).
[CrossRef]

1873

E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen Wahrnehmung,” Arch. Für Mikroskopische Anat.9(1), 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen Wahrnehmung,” Arch. Für Mikroskopische Anat.9(1), 413–418 (1873).
[CrossRef]

Abràmoff, M. D.

M. D. Abràmoff, J. M. Paulo, and J. R. Sunanda, “Image processing with ImageJ,” Biophotonics Int.11, 36–42 (2004).

Babcock, H.

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J.102(10), 2391–2400 (2012).
[CrossRef] [PubMed]

Banterle, N.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol.183(3), 363–367 (2013).
[CrossRef] [PubMed]

Bates, M.

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Beck, M.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol.183(3), 363–367 (2013).
[CrossRef] [PubMed]

Belmont, A. S.

A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol.11(6), 250–257 (2001).
[CrossRef] [PubMed]

Bertaux, N.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008).
[CrossRef] [PubMed]

Betzig, E.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Bobroff, N.

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum.57(6), 1152 (1986).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Brand, A. H.

P. van Roessel and A. H. Brand, “Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins,” Nat. Cell Biol.4(1), E15–E20 (2002).
[CrossRef] [PubMed]

Bui, K. H.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol.183(3), 363–367 (2013).
[CrossRef] [PubMed]

Byars, J. M.

Cheezum, M. K.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Dempster, W. T.

Faisal, M.

D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
[CrossRef]

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Fornasiero, E. F.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Friday, W. A.

J. L. Johnson, M. L. Padgett, and W. A. Friday, “Multiscale image factorization,” Proc. Int. Conf. Neural Networks3, 1465–1468 (1997).

Galbraith, C. G.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

Galbraith, J. A.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

Ghosh, R. N.

R. N. Ghosh and W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules,” Biophys. J.66(5), 1301–1318 (1994).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Gordon, M. P.

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A.101(17), 6462–6465 (2004).
[CrossRef] [PubMed]

Griffiths, C.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers95(5), 322–331 (2011).
[CrossRef] [PubMed]

Grünwald, D.

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

Guilford, W. H.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

Ha, T.

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A.101(17), 6462–6465 (2004).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Helstrom, C. W.

D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
[CrossRef]

Henriques, R.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers95(5), 322–331 (2011).
[CrossRef] [PubMed]

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Hesper Rego, E.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers95(5), 322–331 (2011).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Huang, F.

Johnson, J. L.

J. L. Johnson and M. L. Padgett, “PCNN models and applications,” IEEE Trans. Neural Netw.10(3), 480–498 (1999).
[CrossRef] [PubMed]

J. L. Johnson and J. R. Taylor, “Image factorization : a new hierarchical decomposition technique,” Opt. Eng.38(9), 1517–1523 (1999).
[CrossRef]

J. L. Johnson, M. L. Padgett, and W. A. Friday, “Multiscale image factorization,” Proc. Int. Conf. Neural Networks3, 1465–1468 (1997).

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Lanterman, A. D.

D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
[CrossRef]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Lelek, M.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Lemke, E. A.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol.183(3), 363–367 (2013).
[CrossRef] [PubMed]

Lidke, K. A.

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2(5), 1377–1393 (2011).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Marguet, D.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008).
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

McKinney, S. A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Mets, L.

X. Qu, D. Wu, L. Mets, and N. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” in Proceedings of the National Academy of Sciences of the United States of America (2004), pp. 11298–11303.
[CrossRef]

Mhlanga, M. M.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers95(5), 322–331 (2011).
[CrossRef] [PubMed]

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Mukamel, E. A.

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J.102(10), 2391–2400 (2012).
[CrossRef] [PubMed]

Nieuwenhuizen, R. P. J.

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

Ober, R. J.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Olivo-Marin, J. C.

Padgett, M. L.

J. L. Johnson and M. L. Padgett, “PCNN models and applications,” IEEE Trans. Neural Netw.10(3), 480–498 (1999).
[CrossRef] [PubMed]

J. L. Johnson, M. L. Padgett, and W. A. Friday, “Multiscale image factorization,” Proc. Int. Conf. Neural Networks3, 1465–1468 (1997).

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Paulo, J. M.

M. D. Abràmoff, J. M. Paulo, and J. R. Sunanda, “Image processing with ImageJ,” Biophotonics Int.11, 36–42 (2004).

Pavlovic, G.

G. Pavlovic and A. Tekalp, “Restoration in the presence of multiplicative noise with application to scanned photographic images,” Acoust. Speech. Signal90, 1913–1916 (1990).

Puig, D. L.

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

Qu, X.

X. Qu, D. Wu, L. Mets, and N. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” in Proceedings of the National Academy of Sciences of the United States of America (2004), pp. 11298–11303.
[CrossRef]

Ram, S.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004).
[CrossRef] [PubMed]

Rayleigh, L.

L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci.42(255), 167–195 (1896).
[CrossRef]

Rieger, B.

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

Rigneault, H.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Scherer, N.

X. Qu, D. Wu, L. Mets, and N. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” in Proceedings of the National Academy of Sciences of the United States of America (2004), pp. 11298–11303.
[CrossRef]

Schwartz, S. L.

Selvin, P. R.

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A.101(17), 6462–6465 (2004).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Sergé, A.

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008).
[CrossRef] [PubMed]

Shepp, L. A.

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging1(2), 113–122 (1982).
[CrossRef] [PubMed]

Shroff, H.

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

Snyder, D. L.

D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Stallinga, S.

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

Sunanda, J. R.

M. D. Abràmoff, J. M. Paulo, and J. R. Sunanda, “Image processing with ImageJ,” Biophotonics Int.11, 36–42 (2004).

Taylor, J. R.

J. L. Johnson and J. R. Taylor, “Image factorization : a new hierarchical decomposition technique,” Opt. Eng.38(9), 1517–1523 (1999).
[CrossRef]

Tekalp, A.

G. Pavlovic and A. Tekalp, “Restoration in the presence of multiplicative noise with application to scanned photographic images,” Acoust. Speech. Signal90, 1913–1916 (1990).

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Toet, A.

A. Toet, “Multiscale contrast enhancement with applications to image fusion,” Opt. Eng.31(5), 1026 (1992).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

Valtorta, F.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

van Roessel, P.

P. van Roessel and A. H. Brand, “Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins,” Nat. Cell Biol.4(1), E15–E20 (2002).
[CrossRef] [PubMed]

Vardi, Y.

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging1(2), 113–122 (1982).
[CrossRef] [PubMed]

Walker, W. F.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

Ward, E. S.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004).
[CrossRef] [PubMed]

Waters, J. C.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol.185(7), 1135–1148 (2009).
[CrossRef] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

R. N. Ghosh and W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules,” Biophys. J.66(5), 1301–1318 (1994).
[CrossRef] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

White, R. L.

D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
[CrossRef]

Wu, D.

X. Qu, D. Wu, L. Mets, and N. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” in Proceedings of the National Academy of Sciences of the United States of America (2004), pp. 11298–11303.
[CrossRef]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Zerubia, J.

Zhang, B.

Zhuang, X.

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J.102(10), 2391–2400 (2012).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Zimmer, C.

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

Acoust. Speech. Signal

G. Pavlovic and A. Tekalp, “Restoration in the presence of multiplicative noise with application to scanned photographic images,” Acoust. Speech. Signal90, 1913–1916 (1990).

Appl. Opt.

Arch. Für Mikroskopische Anat.

E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen Wahrnehmung,” Arch. Für Mikroskopische Anat.9(1), 413–418 (1873).
[CrossRef]

Biomed. Opt. Express

Biophotonics Int.

M. D. Abràmoff, J. M. Paulo, and J. R. Sunanda, “Image processing with ImageJ,” Biophotonics Int.11, 36–42 (2004).

Biophys. J.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001).
[CrossRef] [PubMed]

R. N. Ghosh and W. W. Webb, “Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules,” Biophys. J.66(5), 1301–1318 (1994).
[CrossRef] [PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J.102(10), 2391–2400 (2012).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J.86(2), 1185–1200 (2004).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Biopolymers

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers95(5), 322–331 (2011).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging1(2), 113–122 (1982).
[CrossRef] [PubMed]

IEEE Trans. Neural Netw.

J. L. Johnson and M. L. Padgett, “PCNN models and applications,” IEEE Trans. Neural Netw.10(3), 480–498 (1999).
[CrossRef] [PubMed]

J. Cell Biol.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol.185(7), 1135–1148 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A.

D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A.12(2), 272–283 (1995).
[CrossRef]

J. Struct. Biol.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol.183(3), 363–367 (2013).
[CrossRef] [PubMed]

Mag. J. Sci.

L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci.42(255), 167–195 (1896).
[CrossRef]

Nat. Cell Biol.

P. van Roessel and A. H. Brand, “Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins,” Nat. Cell Biol.4(1), E15–E20 (2002).
[CrossRef] [PubMed]

Nat. Methods

R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010).
[CrossRef] [PubMed]

R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, and B. Rieger, “Measuring image resolution in optical nanoscopy,” Nat. Methods10(6), 557–562 (2013).
[CrossRef] [PubMed]

A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Opt. Eng.

A. Toet, “Multiscale contrast enhancement with applications to image fusion,” Opt. Eng.31(5), 1026 (1992).
[CrossRef]

J. L. Johnson and J. R. Taylor, “Image factorization : a new hierarchical decomposition technique,” Opt. Eng.38(9), 1517–1523 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A.101(17), 6462–6465 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum.57(6), 1152 (1986).
[CrossRef]

Science

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003).
[CrossRef] [PubMed]

Trends Cell Biol.

A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol.11(6), 250–257 (2001).
[CrossRef] [PubMed]

Other

R. Juskaitis, “Measuring the real point spread function of high numerical aperture microscope objective lense,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, 2006), pp. 239–250.

J. R. Janesick, Scientific Charge Coupled Devices (SPIE Press monograph, 2001), pp. 605–419.

J. L. Johnson, M. L. Padgett, and W. A. Friday, “Multiscale image factorization,” Proc. Int. Conf. Neural Networks3, 1465–1468 (1997).

J. L. Johnson and J. R. Taylor, “K-Factor Image Factorization,” in AeroSense’99. International Society for Optics and Photonics (1999), Vol. 3715, pp. 166–174.

X. Qu, D. Wu, L. Mets, and N. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” in Proceedings of the National Academy of Sciences of the United States of America (2004), pp. 11298–11303.
[CrossRef]

K. Braeckmans, D. Vercauteren, J. Demeester, and S. C. De Smedt, “Nanoscopy and multidimensional optical fluorescence microscopy,” in (Chapman and Hall, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Image of two PSFs separated by a distance of 3σ~600nm . Before the K-factor transform (black) and after the K-factor transform (red).

Fig. 2
Fig. 2

Super-resolution image acquisition steps for conventional PALM (a) and acquisition steps for the K-factor algorithm (b). Conventional PALM acquisition is divided into three independent steps: frame acquisition using repeated cycles of activation and imaging of the activated fluorophores followed by bleaching to minimize the presence of already visualized particles in posterior acquired images. Localization of the activated fluorophores using methods of single emitter fitting. Reconstruction and creation of the super-resolved image by summing the molecular images across all frames. The K-factor analysis adds a step prior to the localization and is applied to each frame using computer software.

Fig. 3
Fig. 3

Maximum correlation between the reconstructed image and the original image of two PSFs separated by a distance of 3σ~600nm, as a function of k values (left y axis). Number of factors needed for maximum correlation as a function of k values (right y axis).

Fig. 4
Fig. 4

(a) The K-factor effect on overlapping PSFs for k = 0.4 (red) and k = 0.9 (blue). (b) the influence of the number of multiplied harmonics on the RMS error in localization as a function of distances between centers for k = 0.9, n = 48.

Fig. 5
Fig. 5

Error in localization as a function of detected photons, distance between particles 3σ ~600nm, without background noise. The simulation contained 1000 Monte-Carlo iterations.

Fig. 6
Fig. 6

The improvement in detection using the K-factor algorithm as a function of detected photons, for different background noise photons Nb. The distance between particles was 3σ ~600nm.

Fig. 7
Fig. 7

The improvement in localization using the K-factor algorithm as a function of the distance between florescence centers for different number of photons N, without background noise and with k = 0.9, h = 8.

Fig. 8
Fig. 8

Individual PALM frame without processing (a) and after K-factor processing(b). Marked regions is where the difference can be clearly seen. (c),(e) and (g) is the magnification of the marked areas in (a). (d),(f) and (h) is the magnification of the marked areas in (b).

Fig. 9
Fig. 9

Single molecule fitting process preformed on individual frames of conventional PALM (Upper row) and on frames preprocessed by the K-factor algorithm (Lower row). (b) is the magnification of the marked area in (a). PALM analysis (blue circles) localize 2 emitters. (e) is the magnification of the marked area in (d). K-factor preprocessing followed by PALM analysis (red crosses) localize 3 emitters. (c) and (f) show the cross section of the dashed line that passes through the center of the overlapping two emitters with σ = 195nm in the upper part of the image in (b) and (e) respectively.

Fig. 10
Fig. 10

Reconstruction of imaging data from Alexa647 labeled microtubules sample without processing and using the K-factor algorithm prior to the localization. Images in the upper row represent reconstructed image using 5,735 frames and those in the lower row represent reconstructed image using 10,000 frames. (a,c) conventional PALM analysis. (b,d) K-factor algorithm applied to raw data followed by conventional PALM analysis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

er r rms = 1 L i=1 L [ ( x i ^ x i ) 2 + ( y i ^ y i ) 2 ]

Metrics