Abstract

Dual-band Fourier domain optical coherence tomography (FD-OCT) provides depth-resolved spectroscopic imaging that enhances tissue contrast and reduces image speckle. However, previous dual-band FD-OCT systems could not correctly give the tissue spectroscopic contrast due to depth-related discrepancy in the imaging method and attenuation in biological tissue samples. We designed a new dual-band full-range FD-OCT imaging system and developed an algorithm to compensate depth-related fall-off and light attenuation. In our imaging system, the images from two wavelength bands were intrinsically overlapped and their intensities were balanced. The processing time of dual-band OCT image reconstruction and depth-related compensations were minimized by using multiple threads that execute in parallel. Using the newly developed system, we studied tissue phantoms and human cancer xenografts and muscle tissues dissected from severely compromised immune deficient mice. Improved spectroscopic contrast and sensitivity were achieved, benefiting from the depth-related compensations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
    [CrossRef] [PubMed]
  3. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003).
    [CrossRef] [PubMed]
  4. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17(22), 19486–19500 (2009).
    [CrossRef] [PubMed]
  5. S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett.34(13), 1970–1972 (2009).
    [CrossRef] [PubMed]
  6. X. Zhang, J. Hu, R. W. Knighton, X.-R. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express19(20), 19653–19659 (2011).
    [CrossRef] [PubMed]
  7. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  9. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
    [CrossRef] [PubMed]
  10. S. Kray, M. Lenz, F. Spöler, and H. Kurz, “Increased tissue contrast by high resolution simultaneous dual-band optical coherence tomography in three dimensions,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), 809209.
  11. Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt.46(35), 8499–8505 (2007).
    [CrossRef] [PubMed]
  12. Acquiring from GigE Vision Cameras with Vision Acquisition Software”, retrieved http://www.ni.com/white-paper/5651/en .
  13. G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. P. Monchalin, “On the speckle size in optical coherence tomography,” in Proc. SPIE 6847, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, 2008), 684724–684726.
  14. H. Lin and P. Yu, “Speckle mechanism in holographic optical imaging,” Opt. Express15(25), 16322–16327 (2007).
    [CrossRef] [PubMed]
  15. Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett.34(12), 1849–1851 (2009).
    [CrossRef] [PubMed]
  16. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B17(10), 1795–1802 (2000).
    [CrossRef]
  17. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
    [CrossRef] [PubMed]
  18. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt.45(8), 1861–1865 (2006).
    [CrossRef] [PubMed]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007).
    [CrossRef] [PubMed]
  20. M. Zhang, P. Yu, and L. Ma, “Removal of Mirror Image Using Reference Beam Phase Modulation in Dual-Band Fourier-Domain Optical Coherence Tomography,” in OSA Technical Digest (online) (Optical Society of America, 2012), JTh3J.5.
  21. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express16(12), 8406–8420 (2008).
    [CrossRef] [PubMed]
  22. R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol.52(19), 5897–5907 (2007).
    [CrossRef] [PubMed]
  23. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007).
    [CrossRef] [PubMed]
  24. K. K. H. Chan and S. Tang, “High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform,” Biomed. Opt. Express1(5), 1309–1319 (2010).
    [CrossRef] [PubMed]
  25. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics26(12), 2166–2185 (1990).
    [CrossRef]
  26. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
    [CrossRef] [PubMed]
  27. A. Hojjatoleslami and M. R. N. Avanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt.51(21), 4927–4935 (2012).
    [CrossRef] [PubMed]
  28. M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
    [CrossRef] [PubMed]
  29. M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng.35(5), 372–381 (1988).
    [CrossRef] [PubMed]
  30. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
    [CrossRef] [PubMed]
  31. V.-F. Duma, K. S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt.50(29), 5735–5749 (2011).
    [CrossRef] [PubMed]
  32. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
    [CrossRef] [PubMed]
  33. X. Li, G. Shi, and Y. Zhang, “High-speed optical coherence tomography signal processing on GPU,” J. Phys. Conf. Ser.277, 012019 (2011).
    [CrossRef]
  34. Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
    [CrossRef] [PubMed]
  35. Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express20(14), 14797–14813 (2012).
    [CrossRef] [PubMed]
  36. L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
    [PubMed]
  37. A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
    [CrossRef] [PubMed]
  38. F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
    [CrossRef] [PubMed]
  39. X. Li, J. C. Ranasinghesagara, and G. Yao, “Polarization-sensitive reflectance imaging in skeletal muscle,” Opt. Express16(13), 9927–9935 (2008).
    [CrossRef] [PubMed]
  40. H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
    [CrossRef] [PubMed]
  41. Y. Mao, S. Chang, E. Murdock, and C. Flueraru, “Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner,” Opt. Lett.36(11), 1990–1992 (2011).
    [CrossRef] [PubMed]
  42. R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
    [CrossRef]
  43. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
    [CrossRef] [PubMed]
  44. Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
    [CrossRef] [PubMed]

2013 (1)

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

2012 (5)

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
[CrossRef] [PubMed]

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
[CrossRef] [PubMed]

Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express20(14), 14797–14813 (2012).
[CrossRef] [PubMed]

A. Hojjatoleslami and M. R. N. Avanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt.51(21), 4927–4935 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (4)

2009 (4)

2008 (3)

2007 (6)

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol.52(19), 5897–5907 (2007).
[CrossRef] [PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007).
[CrossRef] [PubMed]

H. Lin and P. Yu, “Speckle mechanism in holographic optical imaging,” Opt. Express15(25), 16322–16327 (2007).
[CrossRef] [PubMed]

Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt.46(35), 8499–8505 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

2003 (4)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

1994 (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics26(12), 2166–2185 (1990).
[CrossRef]

1988 (1)

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng.35(5), 372–381 (1988).
[CrossRef] [PubMed]

Aalders, M. C.

F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
[CrossRef] [PubMed]

Adie, S. G.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
[CrossRef] [PubMed]

Ahmad, A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
[CrossRef] [PubMed]

Aoki, G.

Arnfield, M. R.

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng.35(5), 372–381 (1988).
[CrossRef] [PubMed]

Avanaki, M. R. N.

Bajraszewski, T.

Barton, J. K.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003).
[CrossRef] [PubMed]

Baumann, B.

Belabas, N.

Besch-Williford, C.

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

Bilenca, A.

Boppart, S. A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
[CrossRef] [PubMed]

Bouma, B. E.

Cai, Q.-Y.

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

Carney, P. S.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
[CrossRef] [PubMed]

Cense, B.

Chan, A. C.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Chan, K. K. H.

Chang, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics26(12), 2166–2185 (1990).
[CrossRef]

Choma, M.

Chui, P.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Cimalla, P.

Cuevas, M.

de Boer, J. F.

Desjardins, A. E.

Ding, Z.

Dorrer, C.

Drexler, W.

Duma, V.-F.

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Endo, T.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ethier, C. R.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

Faber, D. J.

F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
[CrossRef] [PubMed]

Fabritius, T.

Fercher, A.

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Figueroa, S. D.

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Flueraru, C.

Först, M.

Girard, M. J. A.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

Goetzinger, E.

Gossage, K. W.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003).
[CrossRef] [PubMed]

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Götzinger, E.

Graf, B. W.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

He, H.

He, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C.

Hitzenberger, C. K.

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Hoffman, T. J.

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Hojjatoleslami, A.

Hu, J.

Hu, Z.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, X.-R.

Islam, M. S.

Itoh, M.

Izatt, J.

Jiao, S.

Joffre, M.

Kang, J. U.

Knighton, R. W.

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Koch, E.

Kray, S.

Kurz, H.

Lam, E. Y.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Lane, S. R.

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

Le, T.

Lee, K. S.

Leitgeb, R.

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Li, Q.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Li, W.

Li, X.

Liao, R.

Likforman, J.-P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, H.

Ma, H.

Ma, L.

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Makita, S.

Mao, Y.

Mari, J. M.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

McPhee, M. S.

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng.35(5), 372–381 (1988).
[CrossRef] [PubMed]

Meemon, P.

Mehner, M.

Murdock, E.

Nanda, P. K.

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

Oh, C. M.

Oliveira, M. C.

Ortega, A.

Ozcan, A.

Pan, Y.

Park, B. H.

Pierce, M. C.

Pircher, M.

Pittet, M. J.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Poot, A. A.

F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
[CrossRef] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics26(12), 2166–2185 (1990).
[CrossRef]

Prasanphanich, A.

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Prasanphanich, A. F.

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

X. Zhang, J. Hu, R. W. Knighton, X.-R. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express19(20), 19653–19659 (2011).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ranasinghesagara, J. C.

Retzloff, L.

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Rodriguez, J. J.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003).
[CrossRef] [PubMed]

Rold, T. L.

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Rolland, J. P.

Rollins, A. M.

Sarunic, M.

Schmitt, J. M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shi, G.

X. Li, G. Shi, and Y. Zhang, “High-speed optical coherence tomography signal processing on GPU,” J. Phys. Conf. Ser.277, 012019 (2011).
[CrossRef]

Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett.34(12), 1849–1851 (2009).
[CrossRef] [PubMed]

Sieckman, G.

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Sieckman, G. L.

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

Smith, C. J.

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Spöler, F.

Sticker, M.

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strouthidis, N. G.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

Sublett, S. V.

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tang, S.

Tearney, G. J.

Tkaczyk, T. S.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003).
[CrossRef] [PubMed]

Tulip, J.

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng.35(5), 372–381 (1988).
[CrossRef] [PubMed]

Unterhuber, A.

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
[CrossRef] [PubMed]

van Leeuwen, T. G.

F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
[CrossRef] [PubMed]

Veerendra, B.

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Vermes, I.

F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
[CrossRef] [PubMed]

Volkert, W. A.

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Walther, J.

Wang, K.

Wang, R. K.

R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol.52(19), 5897–5907 (2007).
[CrossRef] [PubMed]

Wang, Y.

Watanabe, Y.

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
[CrossRef] [PubMed]

Wei, L.

Weissleder, R.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics26(12), 2166–2185 (1990).
[CrossRef]

Wong, K. K.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Xu, J.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

Yang, C.

Yao, G.

Yasuno, Y.

Yatagai, T.

Yu, P.

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

H. Lin and P. Yu, “Speckle mechanism in holographic optical imaging,” Opt. Express15(25), 16322–16327 (2007).
[CrossRef] [PubMed]

Yun, T.

Zeng, N.

Zhang, C.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Zhang, K.

Zhang, X.

Zhang, Y.

X. Li, G. Shi, and Y. Zhang, “High-speed optical coherence tomography signal processing on GPU,” J. Phys. Conf. Ser.277, 012019 (2011).
[CrossRef]

Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett.34(12), 1849–1851 (2009).
[CrossRef] [PubMed]

Zhu, R.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

Appl. Opt. (4)

Biomed. Opt. Express (1)

IEEE J. Quantum Electronics (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electronics26(12), 2166–2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-Band Time-Multiplexing Swept-Source Optical Coherence Tomography Based on Optical Parametric Amplification,” IEEE J. Sel. Top. Quantum Electron.18(4), 1287–1292 (2012).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. R. Arnfield, J. Tulip, and M. S. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng.35(5), 372–381 (1988).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
[CrossRef] [PubMed]

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

X. Li, G. Shi, and Y. Zhang, “High-speed optical coherence tomography signal processing on GPU,” J. Phys. Conf. Ser.277, 012019 (2011).
[CrossRef]

Lasers Med. Sci. (1)

F. J. van der Meer, D. J. Faber, M. C. Aalders, A. A. Poot, I. Vermes, and T. G. van Leeuwen, “Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography,” Lasers Med. Sci.25(2), 259–267 (2010).
[CrossRef] [PubMed]

Mol. Imaging (1)

L. Ma, P. Yu, B. Veerendra, T. L. Rold, L. Retzloff, A. Prasanphanich, G. Sieckman, T. J. Hoffman, W. A. Volkert, and C. J. Smith, “In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor,” Mol. Imaging6(3), 171–180 (2007).
[PubMed]

Nature (1)

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Nucl. Med. Biol. (1)

A. F. Prasanphanich, L. Retzloff, S. R. Lane, P. K. Nanda, G. L. Sieckman, T. L. Rold, L. Ma, S. D. Figueroa, S. V. Sublett, T. J. Hoffman, and C. J. Smith, “In vitro and in vivo analysis of [(64)Cu-NO2A-8-Aoc-BBN(7-14)NH2]: a site-directed radiopharmaceutical for positron-emission tomography imaging of T-47D human breast cancer tumors,” Nucl. Med. Biol.36(2), 171–181 (2009).
[CrossRef] [PubMed]

Opt. Express (12)

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007).
[CrossRef] [PubMed]

H. Lin and P. Yu, “Speckle mechanism in holographic optical imaging,” Opt. Express15(25), 16322–16327 (2007).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express16(12), 8406–8420 (2008).
[CrossRef] [PubMed]

X. Li, J. C. Ranasinghesagara, and G. Yao, “Polarization-sensitive reflectance imaging in skeletal muscle,” Opt. Express16(13), 9927–9935 (2008).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17(22), 19486–19500 (2009).
[CrossRef] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express18(14), 15104–15112 (2010).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express20(14), 14797–14813 (2012).
[CrossRef] [PubMed]

X. Zhang, J. Hu, R. W. Knighton, X.-R. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express19(20), 19653–19659 (2011).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Med. Biol. (2)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994).
[CrossRef] [PubMed]

R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol.52(19), 5897–5907 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012).
[CrossRef] [PubMed]

Prostate (1)

Q.-Y. Cai, P. Yu, C. Besch-Williford, C. J. Smith, G. L. Sieckman, T. J. Hoffman, and L. Ma, “Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases,” Prostate73(8), 842–854 (2013).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (4)

S. Kray, M. Lenz, F. Spöler, and H. Kurz, “Increased tissue contrast by high resolution simultaneous dual-band optical coherence tomography in three dimensions,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2011), 809209.

M. Zhang, P. Yu, and L. Ma, “Removal of Mirror Image Using Reference Beam Phase Modulation in Dual-Band Fourier-Domain Optical Coherence Tomography,” in OSA Technical Digest (online) (Optical Society of America, 2012), JTh3J.5.

Acquiring from GigE Vision Cameras with Vision Acquisition Software”, retrieved http://www.ni.com/white-paper/5651/en .

G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. P. Monchalin, “On the speckle size in optical coherence tomography,” in Proc. SPIE 6847, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, 2008), 684724–684726.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Experimental setup of dual-band full range FD-OCT system. S1-S2: superluminescent light emission diodes. A1-A2: anamorphic prism pairs. IS1 and IS2: optical isolators. M1-M2: mirrors. DM: dichroic mirror. HW: half-wave plate. PBS: polarization beam splitter. FC1-FC2: FC/APC fiber collimators. L1–L3: achromatic lenses. L4: achromatic lenses pair. PC: polarization controller. Galvo: galvanometer scanner. BS: 30/70 beam splitter.

Fig. 2
Fig. 2

Structure of LabVIEW program for acquiring, processing and displaying dual-band FD-OCT data. Thread 1 & 2 and thread 2 & 3 are two producer-and-consumer loops that are connected by data queues. Thread 1, 2, 3 and 4 execute in parallel, and the image processing thread is further decomposed into 3 sub-threads.

Fig. 3
Fig. 3

(a) A speckle pattern in a B-scan FD-OCT image. (b) Normalized self-covariance functions of speckle patterns. A Gaussian fitting shows that the lateral and depth speckle sizes (FWHM) are 19 µm and 21 µm for 820 nm, and 28 µm and 23 µm for 760 nm, respectively.

Fig. 4
Fig. 4

Intensity fall-off and compensation along the z axis. Data are acquired using an aluminum reflector placed at different depth positions. (a) Before the depth-related fall-off compensation. (d) After the depth-related fall-off compensation.

Fig. 5
Fig. 5

FD-OCT Images (B-scans) of an infrared viewing card. (a) Image of 760 nm. (b) Image of 820 nm. (c) Depth intensity graph showing an average of 50 A-lines.

Fig. 6
Fig. 6

(a) Dual-band FD-OCT images (B-scan) of a reflector. (b) A reflector behind a wedge-shaped sample with stronger absorption in 820 nm. (c) A reflector behind a stacking sample with stronger absorption in 760 nm. (d) Schematic diagram of the reflector. (e) Schematic diagram of the wedge sample. (f) Schematic diagram of the stacking sample. (g) Absorption spectrum of near infrared dye in the wedge sample of (e). (h) Absorption spectrum of the color filter in the stacking sample of (f). (i) The spectrum of two SLEDs. Inserts in (q), (b), and (c) are the HSV color map (S = 0.8, V changes from 0 to 1, and H ranges between 0 and 250).

Fig. 7
Fig. 7

Simulation results of the depth-related fall-off and compensation. The white lines indicate the zero-cross. The upper images from (a) to (e) are the simulation results before the compensation. Undesired color change when moving away from the zero-cross is clearly seen. The lower images show uniform color after the compensation. From (a) to (e), the reflectivity of longer wavelength decreases while the reflectivity of shorter wavelength increases. The signal intensity for the reflector at the zero-cross: (a) 45 dB at 760 nm, 60 dB at 820 nm. (b) 48.25 dB at 760 nm, 56.75 dB at 820 nm. (c) 51.5 dB at 760 nm, 51.5 dB at 820 nm. (d) 56.75 dB at 760 nm, 48.25 dB at 820 nm. (e) 65 dB at 760 nm, 45 dB at 820 nm.

Fig. 8
Fig. 8

Typical A-lines and linear fitting from a FD-OCT image of the tumor sample. Two lines correspond to different illuminate intensities between the two wavelength bands.

Fig. 9
Fig. 9

Simulation results of depth-related attenuation and compensation. (a) shows images after depth-related fall-off compensation but without attenuation compensation, while (b) shows images after both compensations. Color uniformity is significantly improved in (b). In the simulation, α = 1.8 × 10−5. Red rectangles indicate the effective regions in the A-lines. Below these regions, original signals are below noise, the compensated results are noisy and meaningless. Five color bars I to V correspond to expanded A-lines from samples with different backscattering properties (see section 4.2 for detail description).

Fig. 10
Fig. 10

Tissue phantom results. A-lines before (blue) and after (red) the compensations of the tissue phantom at (a) 760 nm and (b) 820 nm. Images of the tissue phantom before (c) and after (d) the compensations.

Fig. 11
Fig. 11

Dual band FD-OCT images of muscle tissue. (a) Original image. (b) Image with fall-off compensation. (c) Image shows that the sample edge is found. The intensity image is a frequency compound image. (d) Image with fall-off and attenuation compensations. It can be seen that the color information is improved in the final image. The levitated noise is discussed in section 5. It can be removed by edge seeking, as shown in (e).

Fig. 12
Fig. 12

Depth-related fall-off and attenuation compensations of A-lines. Blue: original; Red: after the compensation. (a) and (b): A-line #1 from a tissue showing similar signals at the two wavelengths. (c) and (d): A-line #2 from a tissue showing different signals at the two wavelengths. Both tissues showed improved contrast after the compensations in deep, effective region (axial position 1200-1400 µm in (a) and (b), 800-1000 µm in (c) and (d)).

Fig. 13
Fig. 13

Quantitative evaluation of the compensated A-lines in Fig. 12. Four pairs of CNR for original A-lines (blue) and compensated A-lines (red) correspond to Fig. 12(a), 12(b), 12(c) and 12(d), respectively.

Fig. 14
Fig. 14

Dual-band FD-OCT images of tumor tissue without (a) and with depth-related fall-off and attenuation compensations (b). The deeper regions where red and blue pixels are interlaced correspond to dark region in original image are due to the noise. These regions can easily be removed by setting a threshold. The image size is 420 × 700 pixels covering 2.1 × 3.5 mm2.

Fig. 15
Fig. 15

Dual-band FD-OCT images of heterogeneous tumor tissue without (a) and with (b) depth-related compensations.

Fig. 16
Fig. 16

Dual-band FD-OCT C-scan images in the x-y section for a heterogeneous tumor tissue without (a) and with (b) depth-related compensations.

Fig. 17
Fig. 17

Dual-band FD-OCT images of muscle tissues before ((a) and (b)) and after ((c) and (d)) the depth-related compensations. The colored regions reveal characteristic cellular morphology and arrangement in muscle, which is discussed in section 6.

Fig. 18
Fig. 18

(a) Diffusion weighted-MRI performed in vivo on a SCID mouse bearing human PC-3 tumor and (b) the corresponding hematoxylin and eosin stained histology graph (5 µm section thickness) of the tumor in Fig. 15. The region in red rectangle corresponds to the imaging window in Fig. 15. Arrows indicate the necrotic tissue.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I compensated (n)=I(n)(1+α i=e n1 I compensated (i) ),
I compensated (e)=I(e).
CNR= ( μ r μ b ) σ r 2 + σ b 2 .

Metrics