Abstract

We developed a label-free nonlinear optical (NLO) microscope integrating the stimulated Raman scattering, multi-color two-photon excited fluorescence and second harmonic generation. The system produces multimodal images of protein content, mitochondria distribution and sarcomere structure of fresh muscle samples. With the advanced imaging technique, we studied the mal-development of skeletal muscle caused by sarcomeric gene deficiency. In addition, important development processes of normal muscle from neonatal to adult stage were also clearly revealed based on the changing sarcomere structure, mitochondria distribution and muscle fiber size. The results demonstrate that the newly developed multimodal NLO microscope is a powerful tool to assess the muscle integrity and function.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging skeletal muscle using second harmonic generation and coherent anti-Stokes Raman scattering microscopy

Christian P. Pfeffer, Bjorn R. Olsen, Feruz Ganikhanov, and François Légaré
Biomed. Opt. Express 2(5) 1366-1376 (2011)

Myofibrillar misalignment correlated to triad disappearance of mdx mouse gastrocnemius muscle probed by SHG microscopy

Denis Rouède, Pascal Coumailleau, Emmanuel Schaub, Jean-Jacques Bellanger, Mireille Blanchard-Desce, and François Tiaho
Biomed. Opt. Express 5(3) 858-875 (2014)

In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography

James J. Pasquesi, Simon C. Schlachter, Marni D. Boppart, Eric Chaney, Stephen J. Kaufman, and Stephen A. Boppart
Opt. Express 14(4) 1547-1556 (2006)

References

  • View by:
  • |
  • |
  • |

  1. K. K. Griendling, J. A. Hill, and E. N. Olson, Muscle: fundamental biology and mechanisms of disease (Elsevier Science, 2012).
  2. K. Schuster-Gossler, R. Cordes, and A. Gossler, “Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,” Proc. Natl. Acad. Sci. U.S.A. 104(2), 537–542 (2007).
    [Crossref] [PubMed]
  3. R. T. Dirksen, “Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle,” Appl. Physiol. Nutr. Metab. 34(3), 389–395 (2009).
    [Crossref] [PubMed]
  4. S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
    [Crossref] [PubMed]
  5. R. F. E. Crang and K. L. Klomparens, Artifacts in biological electron microscopy (Plenum Press, 1988).
  6. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
    [Crossref] [PubMed]
  7. J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
    [Crossref] [PubMed]
  8. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
    [Crossref] [PubMed]
  9. D. Li, W. Zheng, and J. Y. Qu, “Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals,” Opt. Lett. 34(18), 2853–2855 (2009).
    [Crossref] [PubMed]
  10. P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry 43(49), 15404–15417 (2004).
    [Crossref] [PubMed]
  11. C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Imaging skeletal muscle using second harmonic generation and coherent anti-Stokes Raman scattering microscopy,” Biomed. Opt. Express 2(5), 1366–1376 (2011).
    [Crossref] [PubMed]
  12. C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
    [Crossref] [PubMed]
  13. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  14. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref] [PubMed]
  15. E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
    [Crossref] [PubMed]
  16. P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
    [Crossref] [PubMed]
  17. D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med. 84(6), 446–468 (2006).
    [Crossref] [PubMed]
  18. I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol. 26(17), 6522–6534 (2006).
    [Crossref] [PubMed]
  19. Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
    [Crossref] [PubMed]
  20. V. Dubowitz, “Enzyme histochemistry of skeletal muscle,” J. Neurol. Neurosurg. Psychiatry 28(6), 516–524 (1965).
    [Crossref] [PubMed]

2013 (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

2011 (2)

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Imaging skeletal muscle using second harmonic generation and coherent anti-Stokes Raman scattering microscopy,” Biomed. Opt. Express 2(5), 1366–1376 (2011).
[Crossref] [PubMed]

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

2010 (1)

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (1)

K. Schuster-Gossler, R. Cordes, and A. Gossler, “Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,” Proc. Natl. Acad. Sci. U.S.A. 104(2), 537–542 (2007).
[Crossref] [PubMed]

2006 (3)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med. 84(6), 446–468 (2006).
[Crossref] [PubMed]

I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol. 26(17), 6522–6534 (2006).
[Crossref] [PubMed]

2005 (1)

E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
[Crossref] [PubMed]

2004 (1)

P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry 43(49), 15404–15417 (2004).
[Crossref] [PubMed]

2001 (1)

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

2000 (1)

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

1965 (1)

V. Dubowitz, “Enzyme histochemistry of skeletal muscle,” J. Neurol. Neurosurg. Psychiatry 28(6), 516–524 (1965).
[Crossref] [PubMed]

Adams, D. J.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Bagshaw, C. R.

P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry 43(49), 15404–15417 (2004).
[Crossref] [PubMed]

Balaban, R. S.

E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
[Crossref] [PubMed]

Brackmann, C.

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

Buhman, K. K.

Cabello, G.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Campagnola, P. J.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Carroll, S.

E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
[Crossref] [PubMed]

Casas, F.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Cassar-Malek, I.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Chen, H.

Chen, J.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Cheng, C. F.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Cheng, J. X.

Chu, P. H.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Combs, C. A.

E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
[Crossref] [PubMed]

Conibear, P. B.

P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry 43(49), 15404–15417 (2004).
[Crossref] [PubMed]

Cordes, R.

K. Schuster-Gossler, R. Cordes, and A. Gossler, “Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,” Proc. Natl. Acad. Sci. U.S.A. 104(2), 537–542 (2007).
[Crossref] [PubMed]

Dalkilic, I.

I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol. 26(17), 6522–6534 (2006).
[Crossref] [PubMed]

Daury, L.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Dauser, D.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Dirksen, R. T.

R. T. Dirksen, “Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle,” Appl. Physiol. Nutr. Metab. 34(3), 389–395 (2009).
[Crossref] [PubMed]

Dougherty, R. P.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Dubowitz, V.

V. Dubowitz, “Enzyme histochemistry of skeletal muscle,” J. Neurol. Neurosurg. Psychiatry 28(6), 516–524 (1965).
[Crossref] [PubMed]

Enejder, A.

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

Evans, S.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Frank, D.

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med. 84(6), 446–468 (2006).
[Crossref] [PubMed]

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Frey, N.

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med. 84(6), 446–468 (2006).
[Crossref] [PubMed]

Fu, D.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Gabrielsson, B.

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

Ganikhanov, F.

Gossler, A.

K. Schuster-Gossler, R. Cordes, and A. Gossler, “Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,” Proc. Natl. Acad. Sci. U.S.A. 104(2), 537–542 (2007).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holmaang, A.

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Huang, C.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Huang, Z.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Jobsis, P. D.

E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
[Crossref] [PubMed]

Joseph, C.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Jung, Y.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Katus, H. A.

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med. 84(6), 446–468 (2006).
[Crossref] [PubMed]

Kenny, A. M.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Knoll, G.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Kuchel, G. A.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Kuhn, C.

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med. 84(6), 446–468 (2006).
[Crossref] [PubMed]

Kunkel, L. M.

I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol. 26(17), 6522–6534 (2006).
[Crossref] [PubMed]

Légaré, F.

Li, D.

Lin, J.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Lu, F.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Málnási-Csizmadia, A.

P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry 43(49), 15404–15417 (2004).
[Crossref] [PubMed]

Marchal-Victorion, S.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Martone, M. E.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Olsen, B. R.

Pfeffer, C. P.

Pilbeam, C. C.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Qu, J. Y.

Rochard, P.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Rodier, A.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Rothstein, E. C.

E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sandberg, A. S.

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

Schienda, J.

I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol. 26(17), 6522–6534 (2006).
[Crossref] [PubMed]

Schuster-Gossler, K.

K. Schuster-Gossler, R. Cordes, and A. Gossler, “Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,” Proc. Natl. Acad. Sci. U.S.A. 104(2), 537–542 (2007).
[Crossref] [PubMed]

Scranton, V. L.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Shelton, G. D.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Shi, Y.

Slipchenko, M. N.

Svedberg, F.

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

Tai, D.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Thompson, T. G.

I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol. 26(17), 6522–6534 (2006).
[Crossref] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Walsh, S. J.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Wang, H.

Wrutniak, C.

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

Xie, X. S.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Xu, M.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Xu, S.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Yu, H.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Zheng, W.

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

D. Li, W. Zheng, and J. Y. Qu, “Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals,” Opt. Lett. 34(18), 2853–2855 (2009).
[Crossref] [PubMed]

Zhou, Q.

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

Zhu, J.

Zubrowski, B.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Appl. Physiol. Nutr. Metab. (1)

R. T. Dirksen, “Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle,” Appl. Physiol. Nutr. Metab. 34(3), 389–395 (2009).
[Crossref] [PubMed]

Biochemistry (1)

P. B. Conibear, A. Málnási-Csizmadia, and C. R. Bagshaw, “The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling,” Biochemistry 43(49), 15404–15417 (2004).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (2)

E. C. Rothstein, S. Carroll, C. A. Combs, P. D. Jobsis, and R. S. Balaban, “Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters,” Biophys. J. 88(3), 2165–2176 (2005).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

J. Biol. Chem. (1)

P. Rochard, A. Rodier, F. Casas, I. Cassar-Malek, S. Marchal-Victorion, L. Daury, C. Wrutniak, and G. Cabello, “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” J. Biol. Chem. 275(4), 2733–2744 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

C. Brackmann, B. Gabrielsson, F. Svedberg, A. Holmaang, A. S. Sandberg, and A. Enejder, “Nonlinear microscopy of lipid storage and fibrosis in muscle and liver tissues of mice fed high-fat diets,” J. Biomed. Opt. 15(6), 066008 (2010).
[Crossref] [PubMed]

J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, “Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique,” J. Biomed. Opt. 16(11), 116024 (2011).
[Crossref] [PubMed]

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

J. Cell Biol. (1)

Q. Zhou, P. H. Chu, C. Huang, C. F. Cheng, M. E. Martone, G. Knoll, G. D. Shelton, S. Evans, and J. Chen, “Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy,” J. Cell Biol. 155(4), 605–612 (2001).
[Crossref] [PubMed]

J. Mol. Med. (1)

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, “The sarcomeric Z-disc: a nodal point in signalling and disease,” J. Mol. Med. 84(6), 446–468 (2006).
[Crossref] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

V. Dubowitz, “Enzyme histochemistry of skeletal muscle,” J. Neurol. Neurosurg. Psychiatry 28(6), 516–524 (1965).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Mol. Cell. Biol. (1)

I. Dalkilic, J. Schienda, T. G. Thompson, and L. M. Kunkel, “Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure,” Mol. Cell. Biol. 26(17), 6522–6534 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Schuster-Gossler, R. Cordes, and A. Gossler, “Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,” Proc. Natl. Acad. Sci. U.S.A. 104(2), 537–542 (2007).
[Crossref] [PubMed]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (2)

K. K. Griendling, J. A. Hill, and E. N. Olson, Muscle: fundamental biology and mechanisms of disease (Elsevier Science, 2012).

R. F. E. Crang and K. L. Klomparens, Artifacts in biological electron microscopy (Plenum Press, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the multimodal nonlinear microscope. M: mirror; BS: beam splitter; DM: dichroic mirror; BBO: Beta Barium Borate crystal; AOM: acousto-optic modulator; SP: short pass filter; Fs: filter set; M-PMT: 16 channels photomultiplier. (b) Normalized TPEF and SHG spectra of TA muscle from KO and WT neonatal mice under 550nm and 740nm excitation.

Fig. 2
Fig. 2

Multimodal images of neonatal and embryonic mice. (a1)-(a4): SRS, tryptophan TPEF, forward SHG, NADH TPEF images of WT neonatal mice; (b1)-(b4): SRS, tryptophan TPEF, forward SHG, NADH TPEF images of KO neonatal mice; (c1),(c2): Forward SHG, NADH TPEF images of WT 17-day embryonic mice; (d1),(d2): Forward SHG, NADH TPEF images of KO 17-day embryonic mice. Field of view of all images is 100um × 100um. Arrowhead: bright spot of lipid droplet.

Fig. 3
Fig. 3

Multimodal images of 3-week and 5-month old mice. (a1)-(a3): Tryptophan TPEF, forward SHG, NADH TPEF images of 3-week old mice; (b1)-(b3): Tryptophan TPEF, forward SHG, NADH TPEF images of 5-month old mice; (c1)-(c3): Zoomed-in superimposed images of forward SHG (colored as violet) and NADH TPEF (colored as yellow) of WT neonatal, 3-week, 5-month old mice. Field of view of row (a)&(b) is 100um × 100um and row (c) is 40um × 40um. Arrowhead: subsarcolemmal mitochondria.

Fig. 4
Fig. 4

2D spatial spectra. Upper row: 2D spectrum of SHG images of WT neonatal (a1), 3-week (b1) and 5-month (c1) old mice. Lower row: 2D spectrum of NADH TPEF images of WT neonatal (a2), 3-week (b2) and 5-month (c2) old mice. The 2D FFT spectral images are generated by ImageJ software. Arrowhead: Fundamental frequency of sarcomere.

Metrics