Abstract

The capability to perform high-resolution, wide field-of-view (FOV) microscopy imaging is highly sought after in biomedical applications. In this paper, we report a wide FOV microscopy system that uses a closed-circuit-television (CCTV) lens for image relay and a flatbed scanner for data acquisition. We show that such an imaging system is capable of capturing a 10 mm × 7.5 mm FOV image with 0.78 µm resolution, resulting in more than 0.5 billion pixels across the entire image. The resolution and field curve of the proposed system were characterized by imaging a USAF resolution target and a hole-array target. To demonstrate its application, 0.5 gigapixel images of histology slides were acquired using this system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oheim, “Advances and challenges in high-throughput microscopy for live-cell subcellular imaging,” Expert Opin Drug Discov6(12), 1299–1315 (2011).
    [CrossRef] [PubMed]
  2. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A13(3), 470–473 (1996).
    [CrossRef]
  3. J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
    [CrossRef] [PubMed]
  4. Dmetrix, “ http://www.dmetrix.net/techtutorial1.shtml .
  5. G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
    [CrossRef] [PubMed]
  6. S. A. Lee, G. Zheng, N. Mukherjee, and C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip12(13), 2385–2390 (2012).
    [CrossRef] [PubMed]
  7. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express18(11), 11181–11191 (2010).
    [CrossRef] [PubMed]
  8. A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).
  9. E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
    [CrossRef] [PubMed]
  10. J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010).
    [CrossRef] [PubMed]
  11. J. Wu, G. Zheng, Z. Li, and C. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36(12), 2179–2181 (2011).
    [CrossRef] [PubMed]
  12. S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. Express21(12), 14555–14565 (2013).
    [CrossRef] [PubMed]
  13. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt.47(30), 5654–5659 (2008).
    [CrossRef] [PubMed]
  14. M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express2(9), 2721–2730 (2011).
    [CrossRef] [PubMed]
  15. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013).
    [CrossRef]
  16. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett.38, 4845–4848 (2013).
  17. K. Fife, A. Gamal, and H. Wong, “A 3mpixel multi-aperture image sensor with 0.7 um pixels in 0.11 um cmos,” in IEEE ISSCC Digest of Technical Papers 48–49 (2008).
  18. M. Ben-Ezra, “A digital gigapixel large-format tile-scan camera,” IEEE Comput. Graph. Appl.31(1), 49–61 (2011).
    [CrossRef]
  19. S. Wang and W. Heidrich, “The Design of an Inexpensive Very High Resolution Scan Camera System,” Comput. Graph. Forum23(3), 441–450 (2004).
    [CrossRef]
  20. G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express21(13), 15131–15143 (2013).
    [CrossRef] [PubMed]
  21. http://www.linhofstudio.com/products/cameras/anagramm_digital_reproduction/anagramm_digital_reproduction.html. ”
  22. G. Zheng, X. Ou, and C. Yang, “Towards Giga-pixel Microscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), CTu3J.1.
    [CrossRef]

2013 (6)

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
[CrossRef] [PubMed]

S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. Express21(12), 14555–14565 (2013).
[CrossRef] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013).
[CrossRef]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett.38, 4845–4848 (2013).

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express21(13), 15131–15143 (2013).
[CrossRef] [PubMed]

2012 (1)

S. A. Lee, G. Zheng, N. Mukherjee, and C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip12(13), 2385–2390 (2012).
[CrossRef] [PubMed]

2011 (5)

M. Oheim, “Advances and challenges in high-throughput microscopy for live-cell subcellular imaging,” Expert Opin Drug Discov6(12), 1299–1315 (2011).
[CrossRef] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
[CrossRef] [PubMed]

M. Ben-Ezra, “A digital gigapixel large-format tile-scan camera,” IEEE Comput. Graph. Appl.31(1), 49–61 (2011).
[CrossRef]

J. Wu, G. Zheng, Z. Li, and C. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36(12), 2179–2181 (2011).
[CrossRef] [PubMed]

M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express2(9), 2721–2730 (2011).
[CrossRef] [PubMed]

2010 (2)

2008 (1)

2006 (1)

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

2004 (1)

S. Wang and W. Heidrich, “The Design of an Inexpensive Very High Resolution Scan Camera System,” Comput. Graph. Forum23(3), 441–450 (2004).
[CrossRef]

1996 (1)

Antebi, Y.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
[CrossRef] [PubMed]

Anthony, L.

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

Ben-Ezra, M.

M. Ben-Ezra, “A digital gigapixel large-format tile-scan camera,” IEEE Comput. Graph. Appl.31(1), 49–61 (2011).
[CrossRef]

Bishara, W.

Coskun, A. F.

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

Cui, X.

Di, J.

Dorsch, R. G.

Elowitz, M. B.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
[CrossRef] [PubMed]

Erath, J.

Fan, Q.

Ferreira, C.

Gilbertson, J. R.

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

Greenbaum, A.

E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
[CrossRef] [PubMed]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

Han, C.

Heidrich, W.

S. Wang and W. Heidrich, “The Design of an Inexpensive Very High Resolution Scan Camera System,” Comput. Graph. Forum23(3), 441–450 (2004).
[CrossRef]

Ho, J.

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

Horstmeyer, R.

Jiang, H.

Jukic, D. M.

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

Khademhosseinieh, B.

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

Lee, L. M.

Lee, M.

Lee, S. A.

S. A. Lee, G. Zheng, N. Mukherjee, and C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip12(13), 2385–2390 (2012).
[CrossRef] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
[CrossRef] [PubMed]

Li, Z.

Lohmann, A. W.

Luo, W.

E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
[CrossRef] [PubMed]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

McLeod, E.

E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
[CrossRef] [PubMed]

Mendlovic, D.

Mudanyali, O.

E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
[CrossRef] [PubMed]

Mukherjee, N.

S. A. Lee, G. Zheng, N. Mukherjee, and C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip12(13), 2385–2390 (2012).
[CrossRef] [PubMed]

Oheim, M.

M. Oheim, “Advances and challenges in high-throughput microscopy for live-cell subcellular imaging,” Expert Opin Drug Discov6(12), 1299–1315 (2011).
[CrossRef] [PubMed]

Ou, X.

Ozcan, A.

E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
[CrossRef] [PubMed]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express2(9), 2721–2730 (2011).
[CrossRef] [PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

Pang, S.

Parwani, A. V.

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

Rodriguez, A.

Su, T. W.

Su, T.-W.

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

Sun, W.

Wang, S.

S. Wang and W. Heidrich, “The Design of an Inexpensive Very High Resolution Scan Camera System,” Comput. Graph. Forum23(3), 441–450 (2004).
[CrossRef]

Wang, Y. M.

Wu, J.

Yagi, Y.

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

Yaglidere, O.

Yang, C.

S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. Express21(12), 14555–14565 (2013).
[CrossRef] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett.38, 4845–4848 (2013).

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express21(13), 15131–15143 (2013).
[CrossRef] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013).
[CrossRef]

S. A. Lee, G. Zheng, N. Mukherjee, and C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip12(13), 2385–2390 (2012).
[CrossRef] [PubMed]

J. Wu, G. Zheng, Z. Li, and C. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36(12), 2179–2181 (2011).
[CrossRef] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
[CrossRef] [PubMed]

J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010).
[CrossRef] [PubMed]

Zalevsky, Z.

Zhang, P.

Zhao, J.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013).
[CrossRef]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express21(13), 15131–15143 (2013).
[CrossRef] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett.38, 4845–4848 (2013).

S. A. Lee, G. Zheng, N. Mukherjee, and C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip12(13), 2385–2390 (2012).
[CrossRef] [PubMed]

J. Wu, G. Zheng, Z. Li, and C. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36(12), 2179–2181 (2011).
[CrossRef] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
[CrossRef] [PubMed]

J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

BMC Clin. Pathol. (1)

J. R. Gilbertson, J. Ho, L. Anthony, D. M. Jukic, Y. Yagi, and A. V. Parwani, “Primary histologic diagnosis using automated whole slide imaging: a validation study,” BMC Clin. Pathol.6(1), 4 (2006).
[CrossRef] [PubMed]

Comput. Graph. Forum (1)

S. Wang and W. Heidrich, “The Design of an Inexpensive Very High Resolution Scan Camera System,” Comput. Graph. Forum23(3), 441–450 (2004).
[CrossRef]

Expert Opin Drug Discov (1)

M. Oheim, “Advances and challenges in high-throughput microscopy for live-cell subcellular imaging,” Expert Opin Drug Discov6(12), 1299–1315 (2011).
[CrossRef] [PubMed]

IEEE Comput. Graph. Appl. (1)

M. Ben-Ezra, “A digital gigapixel large-format tile-scan camera,” IEEE Comput. Graph. Appl.31(1), 49–61 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lab Chip (2)

E. McLeod, W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan, “Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses,” Lab Chip13(11), 2028–2035 (2013).
[CrossRef] [PubMed]

S. A. Lee, G. Zheng, N. Mukherjee, and C. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip12(13), 2385–2390 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. U.S.A.108(41), 16889–16894 (2011).
[CrossRef] [PubMed]

Sci. Rep. (1)

A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep.3, 1717 (2013).

Other (4)

Dmetrix, “ http://www.dmetrix.net/techtutorial1.shtml .

K. Fife, A. Gamal, and H. Wong, “A 3mpixel multi-aperture image sensor with 0.7 um pixels in 0.11 um cmos,” in IEEE ISSCC Digest of Technical Papers 48–49 (2008).

http://www.linhofstudio.com/products/cameras/anagramm_digital_reproduction/anagramm_digital_reproduction.html. ”

G. Zheng, X. Ou, and C. Yang, “Towards Giga-pixel Microscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), CTu3J.1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup of the 0.5 gigapixel microscopy system (not to scale). A CCTV lens was used to magnify the sample by a factor of 30 and a scanner was used to capture the projected image. The distance between the sample and the CCTV lens is about 1 cm and the distance between scanner and the lens is about 30 cm. Inset on the top right shows the magnified image of a USAF target on a letter size paper held in front of the scanner.

Fig. 2
Fig. 2

The automatic focusing scheme of the setup. (a1) The acquired image of a blood smear with the stage moving at a constant speed in the z-direction. (a2) Based on the motion speed, we can plot the F index with respect to different z positions, and thus automatically locate the position of best focus. (b) The magnified image of (a), where the depth-of-focus is estimated to be ~20 µm. In this experiment, a diffused green LED (530 nm central wavelength with ~20 nm spectrum bandwidth) was used for illumination.

Fig. 3
Fig. 3

USAF resolution target acquired by the reported microscopy system. The effective FOV is about 10 mm × 7.5 mm, with 26400 pixels × 20400 pixels across the entire image. The imaging performance at the (a) center, (b) 50% away from center and (c) 95% away from center. The line widths of group 9, element 1, 2 and 3 are 0.98 µm, 0.87 µm, and 0.78 µm, respectively.

Fig. 4
Fig. 4

Displacement of the best focal plane of different FOVs (from center to edge FOV). In this figure, 100% in x-axis corresponds to 10 mm.

Fig. 5
Fig. 5

Monochromatic image (0.5 gigapixels) of a blood smear. (a) The full frame of the captured image. (b1), (b2) and (c1), (c2) are the expanded view of (a).

Fig. 6
Fig. 6

Color image (0.5 gigapixels) of a pathology slide (human metastatic carcinoma in the liver). (a) The full frame of the acquired image. (b1), (b2) and (c1), (c2) are the expanded view of (a).

Fig. 7
Fig. 7

The SBP-resolution summary for microscope objectives and our current CCTV lens based system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F index= x=1 end | 2f( x,y )f( xstep,y )f(x+step,y) |,

Metrics