Abstract

The rapid growth of microfluidic cell culturing in biological and biomedical research and industry calls for fast, non-invasive and reliable methods of evaluating conditions such as pH inside a microfluidic system. We show that by careful calibration it is possible to measure pH within microfluidic chambers with high accuracy and precision, using a direct single-pass measurement of light absorption in a commercially available phenol-red-containing cell culture medium. The measurement is carried out using a standard laboratory microscope and, contrary to previously reported methods, requires no modification of the microfluidic device design. We demonstrate the validity of this method by measuring absorption of light transmitted through 30-micrometer thick microfluidic chambers, using an inverted microscope fitted with a scientific-grade digital camera and two bandpass filters. In the pH range of 7–8, our measurements have a standard deviation and absolute error below 0.05 for a measurement volume smaller than 4 nL.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7, 12–48 (2011).
    [Crossref]
  2. C. Zhang and D. van Noort, “Cells in microfluidics,” Top Curr Chem 304, 295–321 (2011).
    [Crossref] [PubMed]
  3. M.-H. Wu, S.-B. Huang, and G.-B. Lee, “Microfluidic cell culture systems for drug research,” Lab Chip 10, 939–956 (2010).
    [Crossref] [PubMed]
  4. V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
    [Crossref] [PubMed]
  5. S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
    [Crossref] [PubMed]
  6. T. Verch and R. Bakhtiar, “Miniaturized immunoassays: moving beyond the microplate,” Bioanalysis 4, 177–188 (2012).
    [Crossref] [PubMed]
  7. A. L. Paguirigan, J. P. Puccinelli, X. Su, and D. J. Beebe, “Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays,” Assay Drug Dev Technol 8, 591–601 (2010).
    [Crossref] [PubMed]
  8. K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
    [Crossref]
  9. R. Freshney, Culture of Animal Cells (Wiley, 2010).
    [Crossref]
  10. C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
    [Crossref]
  11. R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
    [Crossref] [PubMed]
  12. A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
    [Crossref]
  13. S. Lee, B. L. Ibey, G. L. Cote, and M. V. Pishko, “Measurement of ph and dissolved oxygen within cell culture media using a hydrogel microarray sensor,” Sensors and Actuators B: Chemical 128, 388–398 (2008).
    [Crossref]
  14. C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
    [Crossref]
  15. J. Webster, The Measurement, Instrumentation, and Sensors: Handbook, The electrical engineering handbook series (CRC Press published, 1999).
  16. R. Alberty, Thermodynamics of Biochemical Reactions (Wiley, 2005).
  17. M. W. Toepke and D. J. Beebe, “Pdms absorption of small molecules and consequences in microfluidic applications,” Lab Chip 6, 1484–1486 (2006).
    [Crossref]
  18. R. L. G. Jeong-Yeol Yoon, Encyclopedia of Microfluidics and Nanofluidics (Springer, 2008).
  19. C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
    [Crossref] [PubMed]

2012 (2)

T. Verch and R. Bakhtiar, “Miniaturized immunoassays: moving beyond the microplate,” Bioanalysis 4, 177–188 (2012).
[Crossref] [PubMed]

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

2011 (4)

C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
[Crossref] [PubMed]

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7, 12–48 (2011).
[Crossref]

C. Zhang and D. van Noort, “Cells in microfluidics,” Top Curr Chem 304, 295–321 (2011).
[Crossref] [PubMed]

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

2010 (3)

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

M.-H. Wu, S.-B. Huang, and G.-B. Lee, “Microfluidic cell culture systems for drug research,” Lab Chip 10, 939–956 (2010).
[Crossref] [PubMed]

A. L. Paguirigan, J. P. Puccinelli, X. Su, and D. J. Beebe, “Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays,” Assay Drug Dev Technol 8, 591–601 (2010).
[Crossref] [PubMed]

2009 (1)

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

2008 (1)

S. Lee, B. L. Ibey, G. L. Cote, and M. V. Pishko, “Measurement of ph and dissolved oxygen within cell culture media using a hydrogel microarray sensor,” Sensors and Actuators B: Chemical 128, 388–398 (2008).
[Crossref]

2007 (2)

R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
[Crossref] [PubMed]

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

2006 (2)

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

M. W. Toepke and D. J. Beebe, “Pdms absorption of small molecules and consequences in microfluidic applications,” Lab Chip 6, 1484–1486 (2006).
[Crossref]

Abou-Hassan, A.

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

Alberty, R.

R. Alberty, Thermodynamics of Biochemical Reactions (Wiley, 2005).

Bakhtiar, R.

T. Verch and R. Bakhtiar, “Miniaturized immunoassays: moving beyond the microplate,” Bioanalysis 4, 177–188 (2012).
[Crossref] [PubMed]

Beebe, D. J.

A. L. Paguirigan, J. P. Puccinelli, X. Su, and D. J. Beebe, “Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays,” Assay Drug Dev Technol 8, 591–601 (2010).
[Crossref] [PubMed]

M. W. Toepke and D. J. Beebe, “Pdms absorption of small molecules and consequences in microfluidic applications,” Lab Chip 6, 1484–1486 (2006).
[Crossref]

Bernard, O.

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

Bowden, W.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Cabral, J. T.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

Cabuil, V.

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

Carlborg, C. F.

C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
[Crossref] [PubMed]

Chan, P. P.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7, 12–48 (2011).
[Crossref]

Chang, H. C.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7, 12–48 (2011).
[Crossref]

Chen, C. S.

R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
[Crossref] [PubMed]

Chou, T.-C.

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

Copley, M. R.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Cote, G. L.

S. Lee, B. L. Ibey, G. L. Cote, and M. V. Pishko, “Measurement of ph and dissolved oxygen within cell culture media using a hydrogel microarray sensor,” Sensors and Actuators B: Chemical 128, 388–398 (2008).
[Crossref]

Covert, M. W.

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

Davies, J.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

Dolan, P. R.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

Dufreche, J.-F.

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

Eaves, C. J.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Falconnet, D.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Freshney, R.

R. Freshney, Culture of Animal Cells (Wiley, 2010).
[Crossref]

Friend, J. R.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7, 12–48 (2011).
[Crossref]

Gomez-Sjoberg, R.

R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
[Crossref] [PubMed]

Hansen, C. L.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Haraldsson, T.

C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
[Crossref] [PubMed]

Huang, S.-B.

M.-H. Wu, S.-B. Huang, and G.-B. Lee, “Microfluidic cell culture systems for drug research,” Lab Chip 10, 939–956 (2010).
[Crossref] [PubMed]

Hughey, J. J.

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

Humphries, R. K.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Ibey, B. L.

S. Lee, B. L. Ibey, G. L. Cote, and M. V. Pishko, “Measurement of ph and dissolved oxygen within cell culture media using a hydrogel microarray sensor,” Sensors and Actuators B: Chemical 128, 388–398 (2008).
[Crossref]

Irimia, D.

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

Jarandehei, A.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Jayaraman, A.

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

Jeong-Yeol Yoon, R. L. G.

R. L. G. Jeong-Yeol Yoon, Encyclopedia of Microfluidics and Nanofluidics (Springer, 2008).

Kent, D. G.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

King, K. R.

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

Knapp, D. J. H. F.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Lecault, V.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Lee, G.-B.

M.-H. Wu, S.-B. Huang, and G.-B. Lee, “Microfluidic cell culture systems for drug research,” Lab Chip 10, 939–956 (2010).
[Crossref] [PubMed]

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

Lee, H.-H.

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

Lee, S.

S. Lee, B. L. Ibey, G. L. Cote, and M. V. Pishko, “Measurement of ph and dissolved oxygen within cell culture media using a hydrogel microarray sensor,” Sensors and Actuators B: Chemical 128, 388–398 (2008).
[Crossref]

Lee, T. K.

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

Leyrat, A. A.

R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
[Crossref] [PubMed]

Liao, W.-Y.

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

Lin, C.-F.

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

Lipniacki, T.

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

Malkoch, M.

C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
[Crossref] [PubMed]

McLaughlin, T.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Meriguet, G.

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

Miller, M.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Oberg, K.

C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
[Crossref] [PubMed]

Paguirigan, A. L.

A. L. Paguirigan, J. P. Puccinelli, X. Su, and D. J. Beebe, “Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays,” Assay Drug Dev Technol 8, 591–601 (2010).
[Crossref] [PubMed]

Piret, J. M.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Pirone, D. M.

R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
[Crossref] [PubMed]

Pishko, M. V.

S. Lee, B. L. Ibey, G. L. Cote, and M. V. Pishko, “Measurement of ph and dissolved oxygen within cell culture media using a hydrogel microarray sensor,” Sensors and Actuators B: Chemical 128, 388–398 (2008).
[Crossref]

Puccinelli, J. P.

A. L. Paguirigan, J. P. Puccinelli, X. Su, and D. J. Beebe, “Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays,” Assay Drug Dev Technol 8, 591–601 (2010).
[Crossref] [PubMed]

Quake, S. R.

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
[Crossref] [PubMed]

Rushworth, C. M.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

Sandre, O.

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

Sekulovic, S.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Smith, J. M.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

Su, X.

A. L. Paguirigan, J. P. Puccinelli, X. Su, and D. J. Beebe, “Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays,” Assay Drug Dev Technol 8, 591–601 (2010).
[Crossref] [PubMed]

Taghipour, F.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Tay, S.

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

Toepke, M. W.

M. W. Toepke and D. J. Beebe, “Pdms absorption of small molecules and consequences in microfluidic applications,” Lab Chip 6, 1484–1486 (2006).
[Crossref]

Toner, M.

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

Vallance, C.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

van der Wijngaart, W.

C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
[Crossref] [PubMed]

van Noort, D.

C. Zhang and D. van Noort, “Cells in microfluidics,” Top Curr Chem 304, 295–321 (2011).
[Crossref] [PubMed]

Vaninsberghe, M.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Verch, T.

T. Verch and R. Bakhtiar, “Miniaturized immunoassays: moving beyond the microplate,” Bioanalysis 4, 177–188 (2012).
[Crossref] [PubMed]

Viel, F.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Wang, C.-H.

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

Wang, S.

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

Webster, J.

J. Webster, The Measurement, Instrumentation, and Sensors: Handbook, The electrical engineering handbook series (CRC Press published, 1999).

White, A. K.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Wohrer, S.

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Wu, M.-H.

M.-H. Wu, S.-B. Huang, and G.-B. Lee, “Microfluidic cell culture systems for drug research,” Lab Chip 10, 939–956 (2010).
[Crossref] [PubMed]

Yarmush, M. L.

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

Yeo, L. Y.

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7, 12–48 (2011).
[Crossref]

Zhang, C.

C. Zhang and D. van Noort, “Cells in microfluidics,” Top Curr Chem 304, 295–321 (2011).
[Crossref] [PubMed]

Anal Chem (1)

R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Anal Chem 79, 8557–8563 (2007).
[Crossref] [PubMed]

Assay Drug Dev Technol (1)

A. L. Paguirigan, J. P. Puccinelli, X. Su, and D. J. Beebe, “Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays,” Assay Drug Dev Technol 8, 591–601 (2010).
[Crossref] [PubMed]

Bioanalysis (1)

T. Verch and R. Bakhtiar, “Miniaturized immunoassays: moving beyond the microplate,” Bioanalysis 4, 177–188 (2012).
[Crossref] [PubMed]

Biosens Bioelectron (1)

C.-F. Lin, G.-B. Lee, C.-H. Wang, H.-H. Lee, W.-Y. Liao, and T.-C. Chou, “Microfluidic ph-sensing chips integrated with pneumatic fluid-control devices,” Biosens Bioelectron 21, 1468–1475 (2006).
[Crossref]

Chemical Physics Letters (1)

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chemical Physics Letters 554, 1–14 (2012).
[Crossref]

Lab Chip (4)

M. W. Toepke and D. J. Beebe, “Pdms absorption of small molecules and consequences in microfluidic applications,” Lab Chip 6, 1484–1486 (2006).
[Crossref]

C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, “Beyond pdms: off-stoichiometry thiol-ene (oste) based soft lithography for rapid prototyping of microfluidic devices,” Lab Chip 11, 3136–3147 (2011).
[Crossref] [PubMed]

K. R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, and M. L. Yarmush, “A high-throughput microfluidic real-time gene expression living cell array,” Lab Chip 7, 77–85 (2007).
[Crossref]

M.-H. Wu, S.-B. Huang, and G.-B. Lee, “Microfluidic cell culture systems for drug research,” Lab Chip 10, 939–956 (2010).
[Crossref] [PubMed]

Nat Methods (1)

V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. H. F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, “High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays,” Nat Methods 8, 581–586 (2011).
[Crossref] [PubMed]

Nature (1)

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, “Single-cell nf-kappab dynamics reveal digital activation and analogue information processing,” Nature 466, 267–271 (2010).
[Crossref] [PubMed]

Sensors and Actuators B: Chemical (1)

S. Lee, B. L. Ibey, G. L. Cote, and M. V. Pishko, “Measurement of ph and dissolved oxygen within cell culture media using a hydrogel microarray sensor,” Sensors and Actuators B: Chemical 128, 388–398 (2008).
[Crossref]

Small (1)

L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small 7, 12–48 (2011).
[Crossref]

The Journal of Physical Chemistry C (1)

A. Abou-Hassan, J.-F. Dufreche, O. Sandre, G. Meriguet, O. Bernard, and V. Cabuil, “Fluorescence confocal laser scanning microscopy for ph mapping in a coaxial flow microreactor: Application in the synthesis of super-paramagnetic nanoparticles,” The Journal of Physical Chemistry C 113, 18097–18105 (2009).
[Crossref]

Top Curr Chem (1)

C. Zhang and D. van Noort, “Cells in microfluidics,” Top Curr Chem 304, 295–321 (2011).
[Crossref] [PubMed]

Other (4)

R. Freshney, Culture of Animal Cells (Wiley, 2010).
[Crossref]

J. Webster, The Measurement, Instrumentation, and Sensors: Handbook, The electrical engineering handbook series (CRC Press published, 1999).

R. Alberty, Thermodynamics of Biochemical Reactions (Wiley, 2005).

R. L. G. Jeong-Yeol Yoon, Encyclopedia of Microfluidics and Nanofluidics (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of a live-cell microfluidic measurement system. Incubator box for temperature control not shown.

Fig. 2
Fig. 2

Close-up of a microfluidic chamber, design by Gomez-Sjoberg et al. [11]. The inset shows the typical image frame and the areas used for reference measurement (top) and the different rectangle sizes used pH measurements (bottom).

Fig. 3
Fig. 3

pH values determined with optical absorption measurements, against pre-calibrated values. Error bars represent the standard deviation of 108 individual measurements (12 chambers, 9 individual measurements taken at time intervals of several minutes). The standard deviation and absolute error are also shown in Fig. 4.

Fig. 4
Fig. 4

Standard deviation of the pH value determined with absorption measurements (symbols, top panel) and deviation from predetermined pH value (symbols, bottom panel). Different liquid volumes correspond to the measurement areas shown in the inset of Fig. 2. Solid lines are guides to the eye. The increased uncertainty at low and high pH values is related to low absorption by the acid and base forms of phenol red. The minimum uncertainty is shifted from pKa due to a difference in absorption strength of the acid and base forms.

Fig. 5
Fig. 5

Evolution of pH with changing CO2 concentration in the environment surrounding a PDMS microfluidic chip containing DMEM/F12 medium with phenol red and either a bicarbonate buffer or a HEPES buffer. The figure shows measurements from five separate microfluidic chambers (solid gray lines) as well as their average (solid black lines). Atmospheric CO2 levels were equilibrated at 10% at the beginning of measurements. After 60 minutes (dashed line), the CO2 levels surrounding the chip were reduced to 0.04%. CO2 reduction results in increasing pH in all chambers. The increase is more pronounced in the chambers containing DMEM/F12 with a bicarbonate buffer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = I lamp ( t ) f ( x , y , λ )
pH = p K a + log ( [ X ] [ H X ] ) ,
I i = I lamp ( t ) f ( x , y , λ i ) e α i ρ d ,
I i ( x , y , λ i , t 1 ) / I ( x , y , λ i , t 0 ) = I lamp ( t 1 ) I lamp ( t 0 ) e α λ i ρ d
ln ( T λ 1 ) / ln ( T λ 2 ) = α λ 1 / α λ 2 .
A λ = α λ ρ d = α H X λ [ H X ] d + α X λ [ X ] d
A λ 1 / A λ 2 = α H X λ 1 [ H X ] + α X λ 1 [ X ] α H X λ 2 [ H X ] + α X λ 2 [ X ] = α H X λ 1 + α X λ 1 [ X ] / [ H X ] α H X λ 2 + α X λ 2 [ X ] / [ H X ] .

Metrics