Abstract

Superoxide anion is the key radical that causes intracellular oxidative stress. The lack of a method to directly monitor superoxide concentration in vivo in real time has severely hindered our understanding on its pathophysiology. We made transgenic zebrafish to specifically express yellow fluorescent proteins, a reversible superoxide-specific indicator, in the liver and used a fiber-optic fluorescent probe to noninvasively monitor the superoxide concentration in real time. Several superoxide-inducing and scavenging reagents were administrated onto the fish to alter superoxide concentrations. The distinct biochemical pathways of the reagents can be discerned from the transient behaviors of fluorescence time courses. These results demonstrate the feasibility of this method for analyzing superoxide dynamics and its potential as an in vivo pharmaceutical screening platform.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Sena and N. S. Chandel, “Physiological roles of mitochondrial reactive oxygen species,” Mol. Cell48(2), 158–167 (2012).
    [CrossRef] [PubMed]
  2. P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
    [CrossRef] [PubMed]
  3. V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
    [CrossRef] [PubMed]
  4. M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
    [CrossRef] [PubMed]
  5. L. Wei and R. T. Dirksen, “Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial superoxide flashes: from discovery to new controversies,” J. Gen. Physiol.139(6), 425–434 (2012).
    [CrossRef] [PubMed]
  6. F. L. Muller, “A critical evaluation of cpYFP as a probe for superoxide,” Free Radic. Biol. Med.47(12), 1779–1780 (2009).
    [CrossRef] [PubMed]
  7. M. M. Tarpey, D. A. Wink, and M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” Am. J. Physiol. Regul. Integr. Comp. Physiol.286(3), 431R–444R (2004).
    [CrossRef] [PubMed]
  8. V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
    [CrossRef] [PubMed]
  9. P. R. Gardner, “Aconitase: sensitive target and measure of superoxide,” Methods Enzymol.349, 9–23 (2002).
    [CrossRef] [PubMed]
  10. J. Zielonka, J. Vasquez-Vivar, and B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine,” Nat. Protoc.3(1), 8–21 (2008).
    [CrossRef] [PubMed]
  11. M. Wrona, K. B. Patel, and P. Wardman, “The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress,” Free Radic. Biol. Med.44(1), 56–62 (2008).
    [CrossRef] [PubMed]
  12. S. I. Liochev and I. Fridovich, “Lucigenin as mediator of superoxide production: revisited,” Free Radic. Biol. Med.25(8), 926–928 (1998).
    [CrossRef] [PubMed]
  13. R. H. Fabian, D. S. DeWitt, and T. A. Kent, “In Vivo Detection of Superoxide Anion Production by the Brain Using a Cytochrome Electrode,” J. Cereb. Blood Flow Metab.15(2), 242–247 (1995).
    [CrossRef] [PubMed]
  14. M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
    [CrossRef] [PubMed]
  15. T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001).
    [CrossRef] [PubMed]
  16. W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
    [CrossRef] [PubMed]
  17. G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8(5), 353–367 (2007).
    [CrossRef] [PubMed]
  18. Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett.37(13), 2490–2492 (2012).
    [CrossRef] [PubMed]
  19. K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
    [CrossRef] [PubMed]
  20. Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
    [CrossRef] [PubMed]
  21. L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
    [CrossRef] [PubMed]
  22. W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
    [CrossRef] [PubMed]
  23. R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
    [CrossRef] [PubMed]
  24. M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
    [CrossRef] [PubMed]
  25. T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
    [CrossRef] [PubMed]
  26. T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
    [CrossRef] [PubMed]
  27. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
    [CrossRef] [PubMed]
  28. J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett.27(16), 1412–1414 (2002).
    [CrossRef] [PubMed]
  29. Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express16(17), 12640–12649 (2008).
    [CrossRef] [PubMed]
  30. J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
    [CrossRef]
  31. M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio) (University of Oregon, Eugene, USA, 1995).
  32. J. S. Bus and J. E. Gibson, “Paraquat: model for oxidant-initiated toxicity,” Environ. Health Perspect.55, 37–46 (1984).
    [CrossRef] [PubMed]
  33. P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
    [CrossRef] [PubMed]
  34. Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
    [CrossRef] [PubMed]
  35. T. Kimura and H. Nishioka, “Intracellular generation of superoxide by copper sulphate in Escherichia coli,” Mutat. Res.389(2-3), 237–242 (1997).
    [CrossRef] [PubMed]
  36. A. Nandi and I. Chatterjee, “Scavenging of superoxide radical by ascorbic acid,” J. Biosci.11(1-4), 435–441 (1987).
    [CrossRef]
  37. K. Wellington and B. Jarvis, “Silymarin: a review of its clinical properties in the management of hepatic disorders,” BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy15(7), 465–489 (2001).
    [CrossRef]
  38. D. R. Lloyd and D. H. Phillips, “Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis424, 23–36 (1999).
  39. J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
    [CrossRef] [PubMed]
  40. D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003).
    [CrossRef] [PubMed]

2012 (5)

L. Wei and R. T. Dirksen, “Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial superoxide flashes: from discovery to new controversies,” J. Gen. Physiol.139(6), 425–434 (2012).
[CrossRef] [PubMed]

L. A. Sena and N. S. Chandel, “Physiological roles of mitochondrial reactive oxygen species,” Mol. Cell48(2), 158–167 (2012).
[CrossRef] [PubMed]

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett.37(13), 2490–2492 (2012).
[CrossRef] [PubMed]

2011 (1)

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

2010 (2)

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

2009 (2)

F. L. Muller, “A critical evaluation of cpYFP as a probe for superoxide,” Free Radic. Biol. Med.47(12), 1779–1780 (2009).
[CrossRef] [PubMed]

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

2008 (8)

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

J. Zielonka, J. Vasquez-Vivar, and B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine,” Nat. Protoc.3(1), 8–21 (2008).
[CrossRef] [PubMed]

M. Wrona, K. B. Patel, and P. Wardman, “The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress,” Free Radic. Biol. Med.44(1), 56–62 (2008).
[CrossRef] [PubMed]

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express16(17), 12640–12649 (2008).
[CrossRef] [PubMed]

2007 (2)

J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
[CrossRef] [PubMed]

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8(5), 353–367 (2007).
[CrossRef] [PubMed]

2005 (2)

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

2004 (2)

M. M. Tarpey, D. A. Wink, and M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” Am. J. Physiol. Regul. Integr. Comp. Physiol.286(3), 431R–444R (2004).
[CrossRef] [PubMed]

P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
[CrossRef] [PubMed]

2003 (2)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003).
[CrossRef] [PubMed]

2002 (3)

J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett.27(16), 1412–1414 (2002).
[CrossRef] [PubMed]

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

P. R. Gardner, “Aconitase: sensitive target and measure of superoxide,” Methods Enzymol.349, 9–23 (2002).
[CrossRef] [PubMed]

2001 (2)

T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001).
[CrossRef] [PubMed]

K. Wellington and B. Jarvis, “Silymarin: a review of its clinical properties in the management of hepatic disorders,” BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy15(7), 465–489 (2001).
[CrossRef]

1999 (1)

D. R. Lloyd and D. H. Phillips, “Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis424, 23–36 (1999).

1998 (1)

S. I. Liochev and I. Fridovich, “Lucigenin as mediator of superoxide production: revisited,” Free Radic. Biol. Med.25(8), 926–928 (1998).
[CrossRef] [PubMed]

1997 (3)

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
[CrossRef] [PubMed]

T. Kimura and H. Nishioka, “Intracellular generation of superoxide by copper sulphate in Escherichia coli,” Mutat. Res.389(2-3), 237–242 (1997).
[CrossRef] [PubMed]

1995 (1)

R. H. Fabian, D. S. DeWitt, and T. A. Kent, “In Vivo Detection of Superoxide Anion Production by the Brain Using a Cytochrome Electrode,” J. Cereb. Blood Flow Metab.15(2), 242–247 (1995).
[CrossRef] [PubMed]

1987 (1)

A. Nandi and I. Chatterjee, “Scavenging of superoxide radical by ascorbic acid,” J. Biosci.11(1-4), 435–441 (1987).
[CrossRef]

1984 (1)

J. S. Bus and J. E. Gibson, “Paraquat: model for oxidant-initiated toxicity,” Environ. Health Perspect.55, 37–46 (1984).
[CrossRef] [PubMed]

Amali, A. A.

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

Anders, M. W.

P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
[CrossRef] [PubMed]

Anderson, J. L.

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Baker, J.

Baker, J. R.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express16(17), 12640–12649 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Baranowski, T. C.

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Beard, M. R.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Bedossa, P.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Bouwmans, G.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Brookes, P. S.

P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
[CrossRef] [PubMed]

Bus, J. S.

J. S. Bus and J. E. Gibson, “Paraquat: model for oxidant-initiated toxicity,” Environ. Health Perspect.55, 37–46 (1984).
[CrossRef] [PubMed]

Canali, R.

D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003).
[CrossRef] [PubMed]

Cao, Z.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

Cervinková, Z.

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

Chan, T.

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

Chandel, N. S.

L. A. Sena and N. S. Chandel, “Physiological roles of mitochondrial reactive oxygen species,” Mol. Cell48(2), 158–167 (2012).
[CrossRef] [PubMed]

Chang, Y. C.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express16(17), 12640–12649 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

Chang, Z. K.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Charlotte, F.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Chatterjee, I.

A. Nandi and I. Chatterjee, “Scavenging of superoxide radical by ascorbic acid,” J. Biosci.11(1-4), 435–441 (1987).
[CrossRef]

Chen, J.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Chen, J. R.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Chen, L. J.

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Chen, M. H.

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

Chen, Y.

Chen, Y. C.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Chen, Y. M.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Cheng, A.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Cheng, H.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Chmyrov, A.

J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
[CrossRef] [PubMed]

Cho, J. Y.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Chung, S. I.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Currie, P. D.

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8(5), 353–367 (2007).
[CrossRef] [PubMed]

DeWitt, D. S.

R. H. Fabian, D. S. DeWitt, and T. A. Kent, “In Vivo Detection of Superoxide Anion Production by the Brain Using a Cytochrome Electrode,” J. Cereb. Blood Flow Metab.15(2), 242–247 (1995).
[CrossRef] [PubMed]

Dirksen, R. T.

L. Wei and R. T. Dirksen, “Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial superoxide flashes: from discovery to new controversies,” J. Gen. Physiol.139(6), 425–434 (2012).
[CrossRef] [PubMed]

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Eggeling, C.

J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
[CrossRef] [PubMed]

Endlicher, R.

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

Fabian, R. H.

R. H. Fabian, D. S. DeWitt, and T. A. Kent, “In Vivo Detection of Superoxide Anion Production by the Brain Using a Cytochrome Electrode,” J. Cereb. Blood Flow Metab.15(2), 242–247 (1995).
[CrossRef] [PubMed]

Fang, H.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Farber, S. A.

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Fridovich, I.

S. I. Liochev and I. Fridovich, “Lucigenin as mediator of superoxide production: revisited,” Free Radic. Biol. Med.25(8), 926–928 (1998).
[CrossRef] [PubMed]

Fujimoto, K.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Fujita, M.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Gardner, P. R.

P. R. Gardner, “Aconitase: sensitive target and measure of superoxide,” Methods Enzymol.349, 9–23 (2002).
[CrossRef] [PubMed]

Gibson, J. E.

J. S. Bus and J. E. Gibson, “Paraquat: model for oxidant-initiated toxicity,” Environ. Health Perspect.55, 37–46 (1984).
[CrossRef] [PubMed]

Gong, H. Y.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

Grisham, M. B.

M. M. Tarpey, D. A. Wink, and M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” Am. J. Physiol. Regul. Integr. Comp. Physiol.286(3), 431R–444R (2004).
[CrossRef] [PubMed]

Groom, L.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Hama, K.

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Han, D.

D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003).
[CrossRef] [PubMed]

Han, K. H.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Han, P.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Her, G. M.

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Holstege, A.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Hong, J. R.

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Hsu, C. C.

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Hsu, C. H.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Hu, S. Y.

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

Huang, S. J.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Igarashi, M.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Imbert-Bismut, F.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Jarvis, B.

K. Wellington and B. Jarvis, “Silymarin: a review of its clinical properties in the management of hepatic disorders,” BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy15(7), 465–489 (2001).
[CrossRef]

Jou, L. K.

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Jung, M. K.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Kalyanaraman, B.

J. Zielonka, J. Vasquez-Vivar, and B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine,” Nat. Protoc.3(1), 8–21 (2008).
[CrossRef] [PubMed]

Kang, S. H.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Kao, J. P.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Kaplowitz, N.

D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003).
[CrossRef] [PubMed]

Kasaoka, S.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Kawakami, K.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Kent, T. A.

R. H. Fabian, D. S. DeWitt, and T. A. Kent, “In Vivo Detection of Superoxide Anion Production by the Brain Using a Cytochrome Electrode,” J. Cereb. Blood Flow Metab.15(2), 242–247 (1995).
[CrossRef] [PubMed]

Kim, J. K.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Kimura, T.

T. Kimura and H. Nishioka, “Intracellular generation of superoxide by copper sulphate in Escherichia coli,” Mutat. Res.389(2-3), 237–242 (1997).
[CrossRef] [PubMed]

Knight, J. C.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Kollinger, M.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Koltyar, A.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Korenaga, M.

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

Kotlyar, A.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

Kucera, O.

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

Kuppusamy, P.

V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
[CrossRef] [PubMed]

Lakatta, E. G.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Leach, S. D.

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Lee, H. C.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Lee, K. S.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Lemon, S. M.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Li, D.

Li, K.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Li, L.

Li, Y.

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

Li, Y. H.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

Li, Y. W.

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

Lieschke, G. J.

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8(5), 353–367 (2007).
[CrossRef] [PubMed]

Lin, C. C.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

Lin, C. H.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Lin, C. Y.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Lin, G. H.

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

Liochev, S. I.

S. I. Liochev and I. Fridovich, “Lucigenin as mediator of superoxide production: revisited,” Free Radic. Biol. Med.25(8), 926–928 (1998).
[CrossRef] [PubMed]

Liou, Y. C.

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Liu, J.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Liu, W.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

Lloyd, D. R.

D. R. Lloyd and D. H. Phillips, “Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis424, 23–36 (1999).

Löfdahl, P. A.

J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
[CrossRef] [PubMed]

Lotková, H.

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

Maekawa, T.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Majoros, I.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Majoros, I. J.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

Mathurin, P.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Mattson, M. P.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Miyawaki, A.

T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001).
[CrossRef] [PubMed]

Muller, F. L.

F. L. Muller, “A critical evaluation of cpYFP as a probe for superoxide,” Free Radic. Biol. Med.47(12), 1779–1780 (2009).
[CrossRef] [PubMed]

Myaing, M. T.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett.27(16), 1412–1414 (2002).
[CrossRef] [PubMed]

Nagai, T.

T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001).
[CrossRef] [PubMed]

Nanba, M.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Nandi, A.

A. Nandi and I. Chatterjee, “Scavenging of superoxide radical by ascorbic acid,” J. Biosci.11(1-4), 435–441 (1987).
[CrossRef]

Nishioka, H.

T. Kimura and H. Nishioka, “Intracellular generation of superoxide by copper sulphate in Escherichia coli,” Mutat. Res.389(2-3), 237–242 (1997).
[CrossRef] [PubMed]

Norris, T. B.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express16(17), 12640–12649 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett.27(16), 1412–1414 (2002).
[CrossRef] [PubMed]

Oda, Y.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Okuda, M.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Opolon, P.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Ouyang, K.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Paik, Y. H.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Paradis, V.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Park, E. S.

T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001).
[CrossRef] [PubMed]

Patel, K. B.

M. Wrona, K. B. Patel, and P. Wardman, “The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress,” Free Radic. Biol. Med.44(1), 56–62 (2008).
[CrossRef] [PubMed]

Phillips, D. H.

D. R. Lloyd and D. H. Phillips, “Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis424, 23–36 (1999).

Piton, A.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Poynard, T.

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

Provost, E.

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Qin, S.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Qu, J. Y.

Rekha, R. D.

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

Rettori, D.

D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

Robotham, J. L.

P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
[CrossRef] [PubMed]

Roubaud, V.

V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
[CrossRef] [PubMed]

Roušar, T.

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

Rubinstein, A. L.

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Russell, P. S.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Sankarapandi, S.

V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
[CrossRef] [PubMed]

Sawano, A.

T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001).
[CrossRef] [PubMed]

Scholle, F.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Seidel, C. A.

J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
[CrossRef] [PubMed]

Sena, L. A.

L. A. Sena and N. S. Chandel, “Physiological roles of mitochondrial reactive oxygen species,” Mol. Cell48(2), 158–167 (2012).
[CrossRef] [PubMed]

Sheu, S. S.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
[CrossRef] [PubMed]

Showalter, L. A.

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Shukla, R.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Stanková, P.

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

Sun, J.

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

Tanaka, R.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Tarpey, M. M.

M. M. Tarpey, D. A. Wink, and M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” Am. J. Physiol. Regul. Integr. Comp. Physiol.286(3), 431R–444R (2004).
[CrossRef] [PubMed]

Thomas, T.

Thomas, T. P.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Tordo, P.

V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
[CrossRef] [PubMed]

Tseng, H. C.

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Tsuruta, R.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

Vasquez-Vivar, J.

J. Zielonka, J. Vasquez-Vivar, and B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine,” Nat. Protoc.3(1), 8–21 (2008).
[CrossRef] [PubMed]

Wadsworth, W. J.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Wang, T.

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

Wang, W.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Wang, X.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Wardman, P.

M. Wrona, K. B. Patel, and P. Wardman, “The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress,” Free Radic. Biol. Med.44(1), 56–62 (2008).
[CrossRef] [PubMed]

Wei, L.

L. Wei and R. T. Dirksen, “Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial superoxide flashes: from discovery to new controversies,” J. Gen. Physiol.139(6), 425–434 (2012).
[CrossRef] [PubMed]

Weinman, S. A.

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Wellington, K.

K. Wellington and B. Jarvis, “Silymarin: a review of its clinical properties in the management of hepatic disorders,” BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy15(7), 465–489 (2001).
[CrossRef]

Wen, Z.

Widengren, J.

J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
[CrossRef] [PubMed]

Wink, D. A.

M. M. Tarpey, D. A. Wink, and M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” Am. J. Physiol. Regul. Integr. Comp. Physiol.286(3), 431R–444R (2004).
[CrossRef] [PubMed]

Wrona, M.

M. Wrona, K. B. Patel, and P. Wardman, “The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress,” Free Radic. Biol. Med.44(1), 56–62 (2008).
[CrossRef] [PubMed]

Wu, J. L.

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Xu, J.

Ye, J. Y.

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Y. C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express16(17), 12640–12649 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett.27(16), 1412–1414 (2002).
[CrossRef] [PubMed]

Yeh, Y. H.

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

Yin, J.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Yoon, Y.

P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
[CrossRef] [PubMed]

Yoon, Y. J.

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Yoshikawa, T.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Yuasa, M.

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

Zeng, Y.

Zhang, W.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Zheng, M.

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Zielonka, J.

J. Zielonka, J. Vasquez-Vivar, and B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine,” Nat. Protoc.3(1), 8–21 (2008).
[CrossRef] [PubMed]

Zweier, J. L.

V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
[CrossRef] [PubMed]

Am. J. Physiol. Cell Physiol. (1)

P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
[CrossRef] [PubMed]

Am. J. Physiol. Gastrointest. Liver Physiol. (1)

K. Hama, E. Provost, T. C. Baranowski, A. L. Rubinstein, J. L. Anderson, S. D. Leach, and S. A. Farber, “In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters,” Am. J. Physiol. Gastrointest. Liver Physiol.296(2), G445–G453 (2008).
[CrossRef] [PubMed]

Am. J. Physiol. Regul. Integr. Comp. Physiol. (1)

M. M. Tarpey, D. A. Wink, and M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” Am. J. Physiol. Regul. Integr. Comp. Physiol.286(3), 431R–444R (2004).
[CrossRef] [PubMed]

Anal. Biochem. (1)

V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, “Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide,” Anal. Biochem.247(2), 404–411 (1997).
[CrossRef] [PubMed]

BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy (1)

K. Wellington and B. Jarvis, “Silymarin: a review of its clinical properties in the management of hepatic disorders,” BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy15(7), 465–489 (2001).
[CrossRef]

Cancer (1)

T. P. Thomas, Y. C. Chang, J. Y. Ye, A. Kotlyar, Z. Cao, R. Shukla, S. Qin, T. B. Norris, and J. R. Baker., “Optical fiber-based in vivo quantification of growth factor receptors,” Cancer118(8), 2148–2156 (2012).
[CrossRef] [PubMed]

Cell (1)

W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng, “Superoxide flashes in single mitochondria,” Cell134(2), 279–290 (2008).
[CrossRef] [PubMed]

Dev. Dyn. (1)

L. J. Chen, C. C. Hsu, J. R. Hong, L. K. Jou, H. C. Tseng, J. L. Wu, Y. C. Liou, and G. M. Her, “Liver-specific expression of p53-negative regulator mdm2 leads to growth retardation and fragile liver in zebrafish,” Dev. Dyn.237(4), 1070–1081 (2008).
[CrossRef] [PubMed]

Environ. Health Perspect. (1)

J. S. Bus and J. E. Gibson, “Paraquat: model for oxidant-initiated toxicity,” Environ. Health Perspect.55, 37–46 (1984).
[CrossRef] [PubMed]

Exp. Mol. Med. (1)

Y. H. Paik, Y. J. Yoon, H. C. Lee, M. K. Jung, S. H. Kang, S. I. Chung, J. K. Kim, J. Y. Cho, K. S. Lee, and K. H. Han, “Antifibrotic effects of magnesium lithospermate B on hepatic stellate cells and thioacetamide-induced cirrhotic rats,” Exp. Mol. Med.43(6), 341–349 (2011).
[CrossRef] [PubMed]

Free Radic. Biol. Med. (4)

M. Fujita, R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa, “In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor,” Free Radic. Biol. Med.47(7), 1039–1048 (2009).
[CrossRef] [PubMed]

F. L. Muller, “A critical evaluation of cpYFP as a probe for superoxide,” Free Radic. Biol. Med.47(12), 1779–1780 (2009).
[CrossRef] [PubMed]

M. Wrona, K. B. Patel, and P. Wardman, “The roles of thiol-derived radicals in the use of 2′,7′-dichlorodihydrofluorescein as a probe for oxidative stress,” Free Radic. Biol. Med.44(1), 56–62 (2008).
[CrossRef] [PubMed]

S. I. Liochev and I. Fridovich, “Lucigenin as mediator of superoxide production: revisited,” Free Radic. Biol. Med.25(8), 926–928 (1998).
[CrossRef] [PubMed]

Gastroenterology (1)

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology122(2), 366–375 (2002).
[CrossRef] [PubMed]

Hepatology (1)

W. Liu, J. R. Chen, C. H. Hsu, Y. H. Li, Y. M. Chen, C. Y. Lin, S. J. Huang, Z. K. Chang, Y. C. Chen, C. H. Lin, H. Y. Gong, C. C. Lin, K. Kawakami, and J. L. Wu, “A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver,” Hepatology56(6), 2268–2276 (2012).
[CrossRef] [PubMed]

J. Biol. Chem. (2)

Y. H. Li, M. H. Chen, H. Y. Gong, S. Y. Hu, Y. W. Li, G. H. Lin, C. C. Lin, W. Liu, and J. L. Wu, “Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish,” J. Biol. Chem.285(52), 41001–41009 (2010).
[CrossRef] [PubMed]

M. Korenaga, T. Wang, Y. Li, L. A. Showalter, T. Chan, J. Sun, and S. A. Weinman, “Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production,” J. Biol. Chem.280(45), 37481–37488 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt.13(1), 014024 (2008).
[CrossRef] [PubMed]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003).
[CrossRef] [PubMed]

J. Biosci. (1)

A. Nandi and I. Chatterjee, “Scavenging of superoxide radical by ascorbic acid,” J. Biosci.11(1-4), 435–441 (1987).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

R. H. Fabian, D. S. DeWitt, and T. A. Kent, “In Vivo Detection of Superoxide Anion Production by the Brain Using a Cytochrome Electrode,” J. Cereb. Blood Flow Metab.15(2), 242–247 (1995).
[CrossRef] [PubMed]

J. Clin. Pathol. (1)

V. Paradis, P. Mathurin, M. Kollinger, F. Imbert-Bismut, F. Charlotte, A. Piton, P. Opolon, A. Holstege, T. Poynard, and P. Bedossa, “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” J. Clin. Pathol.50(5), 401–406 (1997).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

L. Wei and R. T. Dirksen, “Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial superoxide flashes: from discovery to new controversies,” J. Gen. Physiol.139(6), 425–434 (2012).
[CrossRef] [PubMed]

J. Phys. Chem. A (1)

J. Widengren, A. Chmyrov, C. Eggeling, P. A. Löfdahl, and C. A. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111(3), 429–440 (2007).
[CrossRef] [PubMed]

Methods Enzymol. (1)

P. R. Gardner, “Aconitase: sensitive target and measure of superoxide,” Methods Enzymol.349, 9–23 (2002).
[CrossRef] [PubMed]

Mol. Cell (1)

L. A. Sena and N. S. Chandel, “Physiological roles of mitochondrial reactive oxygen species,” Mol. Cell48(2), 158–167 (2012).
[CrossRef] [PubMed]

Mol. Pharmacol. (1)

D. Han, R. Canali, D. Rettori, and N. Kaplowitz, “Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria,” Mol. Pharmacol.64(5), 1136–1144 (2003).
[CrossRef] [PubMed]

Mutat. Res. (1)

T. Kimura and H. Nishioka, “Intracellular generation of superoxide by copper sulphate in Escherichia coli,” Mutat. Res.389(2-3), 237–242 (1997).
[CrossRef] [PubMed]

Nat. Protoc. (1)

J. Zielonka, J. Vasquez-Vivar, and B. Kalyanaraman, “Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine,” Nat. Protoc.3(1), 8–21 (2008).
[CrossRef] [PubMed]

Nat. Rev. Genet. (1)

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8(5), 353–367 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links (1)

D. R. Lloyd and D. H. Phillips, “Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis424, 23–36 (1999).

Proc. Natl. Acad. Sci. U.S.A. (1)

T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, “Circularly permuted green fluorescent proteins engineered to sense Ca2+,” Proc. Natl. Acad. Sci. U.S.A.98(6), 3197–3202 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber-based scanning microscope,” Proc. SPIE5700, 23–27 (2005).
[CrossRef]

Toxicol. In Vitro (1)

P. Staňková, O. Kučera, H. Lotková, T. Roušar, R. Endlicher, and Z. Cervinková, “The toxic effect of thioacetamide on rat liver in vitro,” Toxicol. In Vitro24(8), 2097–2103 (2010).
[CrossRef] [PubMed]

Toxicology (1)

R. D. Rekha, A. A. Amali, G. M. Her, Y. H. Yeh, H. Y. Gong, S. Y. Hu, G. H. Lin, and J. L. Wu, “Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio,” Toxicology243(1-2), 11–22 (2008).
[CrossRef] [PubMed]

Other (1)

M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio) (University of Oregon, Eugene, USA, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transgenic zebrafish with cpYFP expressed in the liver. (a) Bright field microscopic image. (b) Merged fluorescent and bright field image. The dashed ellipse indicates the fluorescent liver. (c) Image of a juvenile zebrafish accommodated in the microfluidic channel. (d) The image when the liver is illuminated by the fiber probe. The dashed contour indicates the location of the fiber. The width of the microchannel is 600 μm.

Fig. 2
Fig. 2

(a) Schematic of the fiber-optic fluorescent detection system. (b) The microfluidic chip for zebrafish studies. The shaded area is where the zebrafish is placed. The superoxide-inducing or scavenging reagents are loaded in the liquid tanks A or B, which are controlled by the valves. The liquid flow is controlled by the syringe pump.

Fig. 3
Fig. 3

Fluorescence intensity time courses of (a) cpYFP transfected zebrafish (control-1, 2, 3) and a wild-type zebrafish, (b) zebrafish treated with PQ and AA (b-1) or silymarin (b-2), (c) zebrafish treated with Cu2+ and AA (c-1) or silymarin (c-2), (d) zebrafish treated with TAA and AA (d-0, d-1) or silymarin (d-2). The filled arrows indicate the moments the superoxide-inducing agents were applied, and the open arrows the superoxide-scavenging agents. The intensities are all corrected for the water background.

Metrics