Abstract

Optical coherence microscopy (OCM) is a widely used structural imaging modality. To extend its application in molecular imaging, gold nanorods are widely used as contrast agents for OCM. However, they very often offer limited sensitivity as a result of poor signal to background ratio. Here we experimentally demonstrate that a novel OCM implementation based on dark-field circular depolarization detection can efficiently detect circularly depolarized signal from gold nanorods and at the same time efficiently suppress the background signals. This results into a significant improvement in signal to background ratio.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface Imaging of Living Skin with Optical Coherence Microscopy,” Dermatology (Basel)191(2), 93–98 (1995).
    [CrossRef] [PubMed]
  3. J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
    [CrossRef] [PubMed]
  4. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005).
    [CrossRef] [PubMed]
  5. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater.21(48), 4880–4910 (2009).
    [CrossRef]
  6. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  7. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
    [CrossRef] [PubMed]
  8. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
    [CrossRef]
  9. J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).
  10. M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett.35(20), 3489–3491 (2010).
    [CrossRef] [PubMed]
  11. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005).
    [CrossRef] [PubMed]
  12. H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010).
    [CrossRef] [PubMed]
  13. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express3(11), 2881–2895 (2012).
    [CrossRef] [PubMed]
  14. K. B. Mehta and N. Chen, “Plasmonic chiral contrast agents for optical coherence tomography: numerical study,” Opt. Express19(16), 14903–14912 (2011).
    [CrossRef] [PubMed]
  15. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express20(19), 21385–21399 (2012).
    [CrossRef] [PubMed]
  16. B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods,” J. Phys. Chem. C112(33), 12760–12768 (2008).
    [CrossRef]
  17. B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Tunable depolarized light scattering from gold and gold/silver nanorods,” Phys. Chem. Chem. Phys.12(13), 3210–3218 (2010).
    [CrossRef] [PubMed]
  18. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express16(3), 2153–2167 (2008).
    [CrossRef] [PubMed]
  19. M. Villiger, C. Pache, R. A. Leitgeb, and T. Lasser, “Coherent transfer functions and extended depth of field,” in BiOS, J. A. Izatt, J. G. Fujimoto, and V. V. Tuchin, eds. (International Society for Optics and Photonics, 2010), pp. 755417–755417–5.
  20. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt.48(20), 3998–4002 (2009).
    [CrossRef] [PubMed]
  21. P. Török, Z. Laczik, and C. J. Sheppard, “Effect of half-stop lateral misalignment on imaging of dark-field and stereoscopic confocal microscopes,” Appl. Opt.35(34), 6732–6735 (1996).
    [CrossRef] [PubMed]
  22. Y. Chen, L. Otis, and Q. Zhu, “Polarization memory effect in optical coherence tomography and dental imaging application,” J. Biomed. Opt.16(8), 086005 (2011).
    [CrossRef] [PubMed]
  23. P. Di Ninni, Y. Bérubé-Lauzière, L. Mercatelli, E. Sani, and F. Martelli, “Fat emulsions as diffusive reference standards for tissue simulating phantoms?” Appl. Opt.51(30), 7176–7182 (2012).
    [CrossRef] [PubMed]
  24. Gold nanorods 10 nm diameter, absorption/850 nm, dispersion in H2O | Sigma-Aldrich,” http://www.sigmaaldrich.com/catalog/product/aldrich/716839?lang=en&region=SG .

2012

2011

Y. Chen, L. Otis, and Q. Zhu, “Polarization memory effect in optical coherence tomography and dental imaging application,” J. Biomed. Opt.16(8), 086005 (2011).
[CrossRef] [PubMed]

K. B. Mehta and N. Chen, “Plasmonic chiral contrast agents for optical coherence tomography: numerical study,” Opt. Express19(16), 14903–14912 (2011).
[CrossRef] [PubMed]

2010

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett.35(20), 3489–3491 (2010).
[CrossRef] [PubMed]

H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010).
[CrossRef] [PubMed]

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Tunable depolarized light scattering from gold and gold/silver nanorods,” Phys. Chem. Chem. Phys.12(13), 3210–3218 (2010).
[CrossRef] [PubMed]

2009

W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt.48(20), 3998–4002 (2009).
[CrossRef] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
[CrossRef]

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

2008

2007

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

2006

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

2000

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

1996

1995

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface Imaging of Living Skin with Optical Coherence Microscopy,” Dermatology (Basel)191(2), 93–98 (1995).
[CrossRef] [PubMed]

1994

Aaron, J.

Au, L.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Berclaz, C.

Bérubé-Lauzière, Y.

Bocchio, N. L.

Bonner, R. F.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface Imaging of Living Skin with Optical Coherence Microscopy,” Dermatology (Basel)191(2), 93–98 (1995).
[CrossRef] [PubMed]

Boppart, S. A.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

Bouwens, A.

Burt, J.

Chen, N.

Chen, Y.

Y. Chen, L. Otis, and Q. Zhu, “Polarization memory effect in optical coherence tomography and dental imaging application,” J. Biomed. Opt.16(8), 086005 (2011).
[CrossRef] [PubMed]

Chow, T. H.

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

de la Peña Mattozzi, M.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

de la Rosa, E.

Di Ninni, P.

Duvall, C. L.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gibson, M. I.

Gong, W.

Goulley, J.

Harrison, N.

Haskell, R. C.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Hee, M. R.

Hettinger, J. W.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

Izatt, J. A.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

José-Yacamán, M.

Kah, J. C. Y.

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

Khanadeev, V.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Tunable depolarized light scattering from gold and gold/silver nanorods,” Phys. Chem. Chem. Phys.12(13), 3210–3218 (2010).
[CrossRef] [PubMed]

Khanadeev, V. A.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods,” J. Phys. Chem. C112(33), 12760–12768 (2008).
[CrossRef]

Khlebtsov, B.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Tunable depolarized light scattering from gold and gold/silver nanorods,” Phys. Chem. Chem. Phys.12(13), 3210–3218 (2010).
[CrossRef] [PubMed]

Khlebtsov, B. N.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods,” J. Phys. Chem. C112(33), 12760–12768 (2008).
[CrossRef]

Khlebtsov, N.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Tunable depolarized light scattering from gold and gold/silver nanorods,” Phys. Chem. Chem. Phys.12(13), 3210–3218 (2010).
[CrossRef] [PubMed]

Khlebtsov, N. G.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods,” J. Phys. Chem. C112(33), 12760–12768 (2008).
[CrossRef]

Koh, K. Z. Y.

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

Laczik, Z.

Lasser, T.

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Li, X.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Lu, X.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Marks, D. L.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005).
[CrossRef] [PubMed]

Martelli, F.

Medford, J. I.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Mehta, K. B.

Mercatelli, L.

Meyer, T. A.

Mhaisalkar, S.

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

Myers, W. R.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

Oldenburg, A. L.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

Olivo, M.

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

Ong, Q. K.

H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010).
[CrossRef] [PubMed]

Otis, L.

Y. Chen, L. Otis, and Q. Zhu, “Polarization memory effect in optical coherence tomography and dental imaging application,” J. Biomed. Opt.16(8), 086005 (2011).
[CrossRef] [PubMed]

Owen, G. M.

Pache, C.

Parsons, R. L.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Patil, C. A.

Petersen, D. C.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Reeves, A.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Sani, E.

Santschi, C.

Schmitt, J. M.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface Imaging of Living Skin with Optical Coherence Microscopy,” Dermatology (Basel)191(2), 93–98 (1995).
[CrossRef] [PubMed]

Sheppard, C. J.

Sheppard, C. J. R.

W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt.48(20), 3998–4002 (2009).
[CrossRef] [PubMed]

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

Si, K.

Skala, M. C.

Skrabalak, S. E.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Sokolov, K.

Song, H.-M.

H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010).
[CrossRef] [PubMed]

Song, K. S.

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

Suslick, K. S.

Swanson, E. A.

Török, P.

Toublan, F. J.-J.

Travis, K.

Tucker-Schwartz, J. M.

Villiger, M.

Wang, R.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Wax, A.

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
[CrossRef]

Wei, A.

H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

Wei, Q.

H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010).
[CrossRef] [PubMed]

Williams, M. E.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Xia, Y.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Xu, C.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005).
[CrossRef] [PubMed]

Yadlowsky, M. J.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface Imaging of Living Skin with Optical Coherence Microscopy,” Dermatology (Basel)191(2), 93–98 (1995).
[CrossRef] [PubMed]

Zhu, Q.

Y. Chen, L. Otis, and Q. Zhu, “Polarization memory effect in optical coherence tomography and dental imaging application,” J. Biomed. Opt.16(8), 086005 (2011).
[CrossRef] [PubMed]

ACS Nano

H.-M. Song, Q. Wei, Q. K. Ong, and A. Wei, “Plasmon-Resonant Nanoparticles and Nanostars with Magnetic Cores: Synthesis and Magnetomotive Imaging,” ACS Nano4(9), 5163–5173 (2010).
[CrossRef] [PubMed]

Adv. Mater.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

Appl. Opt.

Biomed. Opt. Express

Dermatology (Basel)

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface Imaging of Living Skin with Optical Coherence Microscopy,” Dermatology (Basel)191(2), 93–98 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005).
[CrossRef] [PubMed]

J. C. Y. Kah, M. Olivo, T. H. Chow, K. S. Song, K. Z. Y. Koh, S. Mhaisalkar, and C. J. R. Sheppard, “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” J. Biomed. Opt.14, 054015 (2009).

Y. Chen, L. Otis, and Q. Zhu, “Polarization memory effect in optical coherence tomography and dental imaging application,” J. Biomed. Opt.16(8), 086005 (2011).
[CrossRef] [PubMed]

J. Phys. Chem. B

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods,” J. Phys. Chem. C112(33), 12760–12768 (2008).
[CrossRef]

Laser Photon. Rev.

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
[CrossRef]

Nanomedicine (Lond)

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

B. Khlebtsov, V. Khanadeev, and N. Khlebtsov, “Tunable depolarized light scattering from gold and gold/silver nanorods,” Phys. Chem. Chem. Phys.12(13), 3210–3218 (2010).
[CrossRef] [PubMed]

Plant Physiol.

J. W. Hettinger, M. de la Peña Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Wang, and J. I. Medford, “Optical Coherence Microscopy. A Technology for Rapid, in Vivo, Non-Destructive Visualization of Plants and Plant Cells,” Plant Physiol.123(1), 3–16 (2000).
[CrossRef] [PubMed]

Other

M. Villiger, C. Pache, R. A. Leitgeb, and T. Lasser, “Coherent transfer functions and extended depth of field,” in BiOS, J. A. Izatt, J. G. Fujimoto, and V. V. Tuchin, eds. (International Society for Optics and Photonics, 2010), pp. 755417–755417–5.

Gold nanorods 10 nm diameter, absorption/850 nm, dispersion in H2O | Sigma-Aldrich,” http://www.sigmaaldrich.com/catalog/product/aldrich/716839?lang=en&region=SG .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.
                            1
Fig. 1

Configuration for DF circular depolarization sensitive OCM (BS1, BS2: Beam Splitter; RM1, RM2: Reflective Mirror; SLD: Super-Luminescent Diode; QWP: Quarter wave plate; HWP: Half wave plate)

Fig. 2
Fig. 2

Tissue phantom setup (a) Schematic and (b) Photo of the setup

Fig.
                            3
Fig. 3

En-face images of the tissue phantom at different depths (0 mm, 0.5mm, and 1.3mm). BF = Bright field setup, DP = Depolarization setup, DF = Dark-field setup, DP + DF = Depolarization and Darkfield setup. The grayscale bar indicates signal strength in dB, Scale bar = 20μm.

Fig.
                                4
Fig. 4

Intensity fluctuation along in the line profile region identified in the Fig. 3, for the BF, DF and DP + DF measurement setup

Fig.
                            5
Fig. 5

En-face image of the cells obtained with BF = Bright field, DF = Dark field, DF + DP = Dark field + depolarization OCM setups, Scale bar = 10μm. The grayscale level indicates signal strength in dB

Fig. 6
Fig. 6

Intensity fluctuation along in the line profile region identified in the Fig. 4., for the BF, DF and DP + DF measurement setup

Metrics