Abstract

High resolution microscopy is essential for advanced study of biological structures and accurate diagnosis of medical diseases. The spatial resolution of conventional microscopes is light diffraction limited. Structured illumination has been extensively explored to break the diffraction limit in wide field light microscopy. However, deployable application of the structured illumination in scanning laser microscopy is challenging due to the complexity of the illumination system and possible phase errors in sequential illumination patterns required for super-resolution reconstruction. We report here a super-resolution scanning laser imaging system which employs virtually structured detection (VSD) to break the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost and phase-artifact free strategy to achieve super-resolution in scanning laser microscopy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  2. S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
    [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  5. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
    [CrossRef] [PubMed]
  6. S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011).
    [CrossRef] [PubMed]
  7. S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
    [CrossRef] [PubMed]
  8. H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
    [CrossRef] [PubMed]
  9. M. Bertero, P. Brianzi, and E. Pike, “Super-resolution in confocal scanning microscopy,” Inverse Probl.3(2), 195–212 (1987).
    [CrossRef]
  10. M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
    [CrossRef]
  11. M. Defrise and C. Mol, “Super-resolution in confocal scanning microscopy: generalized inversion formulae,” Inverse Probl.8(2), 175–185 (1992).
    [CrossRef]
  12. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  13. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
    [CrossRef] [PubMed]
  14. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
    [CrossRef] [PubMed]
  15. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express16(13), 9290–9305 (2008).
    [CrossRef] [PubMed]
  16. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
    [CrossRef] [PubMed]
  17. J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
    [CrossRef] [PubMed]
  18. D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
    [CrossRef] [PubMed]
  19. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt.38(10), 2105–2115 (1999).
    [CrossRef] [PubMed]
  20. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
    [CrossRef] [PubMed]
  21. M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002).
    [CrossRef] [PubMed]
  22. T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2537–2549 (2012).
    [CrossRef] [PubMed]
  23. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987).
    [CrossRef] [PubMed]
  24. M. Bertero and P. Boccacci, “Super-resolution in computational imaging,” Micron34(6-7), 265–273 (2003).
    [CrossRef] [PubMed]
  25. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
    [CrossRef]
  26. S. E. Nilsson, “An Electron Microscopic Classification of the Retinal Receptors of the Leopard Frog (Rana Pipiens),” J. Ultrastruct. Res.10(5-6), 390–416 (1964).
    [CrossRef] [PubMed]
  27. P. A. Liebman and G. Entine, “Visual pigments of frog and tadpole (Rana pipiens),” Vision Res.8(7), 761–775 (1968).
    [CrossRef] [PubMed]
  28. X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express16(17), 12446–12459 (2008).
    [CrossRef] [PubMed]
  29. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt.44(11), 2019–2023 (2005).
    [CrossRef] [PubMed]
  30. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A26(2), 413–424 (2009).
    [CrossRef] [PubMed]
  31. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results,” J. Opt. Soc. Am. A27(8), 1770–1782 (2010).
    [CrossRef] [PubMed]
  32. M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  33. T. Wilson, Confocal microscopy (Academic Press, London, 1990)
  34. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  35. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
    [CrossRef] [PubMed]
  36. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express2(6), 1674–1686 (2011).
    [CrossRef] [PubMed]
  37. Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci.53(13), 8139–8145 (2012).
    [CrossRef] [PubMed]
  38. Q. X. Zhang, R. W. Lu, Y. G. Li, and X. C. Yao, “In vivo confocal imaging of fast intrinsic optical signals correlated with frog retinal activation,” Opt. Lett.36(23), 4692–4694 (2011).
    [CrossRef] [PubMed]
  39. Q. X. Zhang, J. Y. Wang, L. Liu, and X. C. Yao, “Microlens array recording of localized retinal responses,” Opt. Lett.35(22), 3838–3840 (2010).
    [CrossRef] [PubMed]

2012 (4)

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

T. Y. Chui, D. A. Vannasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express3(10), 2537–2549 (2012).
[CrossRef] [PubMed]

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci.53(13), 8139–8145 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (2)

2009 (2)

S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A26(2), 413–424 (2009).
[CrossRef] [PubMed]

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
[CrossRef] [PubMed]

2008 (5)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express16(13), 9290–9305 (2008).
[CrossRef] [PubMed]

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
[CrossRef] [PubMed]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express16(17), 12446–12459 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

2006 (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

2005 (2)

X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt.44(11), 2019–2023 (2005).
[CrossRef] [PubMed]

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

2003 (2)

M. Bertero and P. Boccacci, “Super-resolution in computational imaging,” Micron34(6-7), 265–273 (2003).
[CrossRef] [PubMed]

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

2002 (1)

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002).
[CrossRef] [PubMed]

2000 (2)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

1999 (1)

1997 (2)

1994 (1)

1992 (1)

M. Defrise and C. Mol, “Super-resolution in confocal scanning microscopy: generalized inversion formulae,” Inverse Probl.8(2), 175–185 (1992).
[CrossRef]

1989 (1)

M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
[CrossRef]

1987 (2)

M. Bertero, P. Brianzi, and E. Pike, “Super-resolution in confocal scanning microscopy,” Inverse Probl.3(2), 195–212 (1987).
[CrossRef]

T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987).
[CrossRef] [PubMed]

1968 (1)

P. A. Liebman and G. Entine, “Visual pigments of frog and tadpole (Rana pipiens),” Vision Res.8(7), 761–775 (1968).
[CrossRef] [PubMed]

1964 (1)

S. E. Nilsson, “An Electron Microscopic Classification of the Retinal Receptors of the Leopard Frog (Rana Pipiens),” J. Ultrastruct. Res.10(5-6), 390–416 (1964).
[CrossRef] [PubMed]

Agard, D. A.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

Anderson, R. R.

Babcock, H. P.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Balderas-Mata, S.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Bennett, B. T.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Berning, S.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Bertero, M.

M. Bertero and P. Boccacci, “Super-resolution in computational imaging,” Micron34(6-7), 265–273 (2003).
[CrossRef] [PubMed]

M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
[CrossRef]

M. Bertero, P. Brianzi, and E. Pike, “Super-resolution in confocal scanning microscopy,” Inverse Probl.3(2), 195–212 (1987).
[CrossRef]

Betzig, E.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bewersdorf, J.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Bi, G. Q.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Boccacci, P.

M. Bertero and P. Boccacci, “Super-resolution in computational imaging,” Micron34(6-7), 265–273 (2003).
[CrossRef] [PubMed]

M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Booth, M. J.

D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express16(13), 9290–9305 (2008).
[CrossRef] [PubMed]

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002).
[CrossRef] [PubMed]

Botcherby, E. J.

Brianzi, P.

M. Bertero, P. Brianzi, and E. Pike, “Super-resolution in confocal scanning microscopy,” Inverse Probl.3(2), 195–212 (1987).
[CrossRef]

Burns, S. A.

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Carlini, A. R.

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Carroll, J.

Chui, T. Y.

Conchello, J. A.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
[CrossRef] [PubMed]

Cooper, R. F.

Curcio, C. A.

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci.53(13), 8139–8145 (2012).
[CrossRef] [PubMed]

Davidson, M. W.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

De Mol, C.

M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
[CrossRef]

Débarre, D.

Defrise, M.

M. Defrise and C. Mol, “Super-resolution in confocal scanning microscopy: generalized inversion formulae,” Inverse Probl.8(2), 175–185 (1992).
[CrossRef]

M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
[CrossRef]

Dibaj, P.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Dubis, A. M.

Dubra, A.

Duncan, J. L.

Entine, G.

P. A. Liebman and G. Entine, “Visual pigments of frog and tadpole (Rana pipiens),” Vision Res.8(7), 761–775 (1968).
[CrossRef] [PubMed]

Fienup, J. R.

Galbraith, C. G.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

Galbraith, J. A.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

George, J. S.

Gillette, J.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Gould, T. J.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

He, J.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011).
[CrossRef] [PubMed]

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Huang, B.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Jones, S. A.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011).
[CrossRef] [PubMed]

Jones, S. M.

Juette, M. F.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Juskaitis, R.

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002).
[CrossRef] [PubMed]

M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

Karadaglic, D.

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
[CrossRef] [PubMed]

Kim, D. Y.

Lessard, M. D.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Li, Y. G.

Liang, J.

Lichtman, J. W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
[CrossRef] [PubMed]

Liebman, P. A.

P. A. Liebman and G. Entine, “Visual pigments of frog and tadpole (Rana pipiens),” Vision Res.8(7), 761–775 (1968).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Liu, L.

Lu, J.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
[CrossRef] [PubMed]

Lu, R. W.

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci.53(13), 8139–8145 (2012).
[CrossRef] [PubMed]

Q. X. Zhang, R. W. Lu, Y. G. Li, and X. C. Yao, “In vivo confocal imaging of fast intrinsic optical signals correlated with frog retinal activation,” Opt. Lett.36(23), 4692–4694 (2011).
[CrossRef] [PubMed]

Merino, D.

Miller, D. T.

Min, W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
[CrossRef] [PubMed]

Mlodzianoski, M. J.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Mol, C.

M. Defrise and C. Mol, “Super-resolution in confocal scanning microscopy: generalized inversion formulae,” Inverse Probl.8(2), 175–185 (1992).
[CrossRef]

Nagpure, B. S.

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

Neil, M. A.

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002).
[CrossRef] [PubMed]

M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

Nilsson, S. E.

S. E. Nilsson, “An Electron Microscopic Classification of the Retinal Receptors of the Leopard Frog (Rana Pipiens),” J. Ultrastruct. Res.10(5-6), 390–416 (1964).
[CrossRef] [PubMed]

Norris, J. L.

Olenych, S.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Olivier, S. S.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Perry, B.

Pike, E.

M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
[CrossRef]

M. Bertero, P. Brianzi, and E. Pike, “Super-resolution in confocal scanning microscopy,” Inverse Probl.3(2), 195–212 (1987).
[CrossRef]

Pilli, S.

Rajadhyaksha, M.

Ranken, D. M.

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

Rector, D. M.

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

Roorda, A.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

Shao, L.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Shim, S. H.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011).
[CrossRef] [PubMed]

Shroff, H.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

Shroff, S. A.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Steffens, H.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Sulai, Y.

Tiruveedhula, P.

Vannasdale, D. A.

Vaughan, J. C.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Wang, C. J.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Wang, J. Y.

Wang, X.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Webb, R. H.

Werner, J. S.

White, H.

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

Wichmann, J.

Williams, D. R.

Willig, K. I.

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

Wilson, T.

Xia, C.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Xie, X. S.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
[CrossRef] [PubMed]

Xu, C.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Yamauchi, A.

Yao, X. C.

Zawadzki, R. J.

Zhang, Q. X.

Zhao, Y. B.

Zhong, G.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

Zhuang, X.

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (4)

Biophys. J. (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008).
[CrossRef] [PubMed]

Inverse Probl. (3)

M. Bertero, P. Brianzi, and E. Pike, “Super-resolution in confocal scanning microscopy,” Inverse Probl.3(2), 195–212 (1987).
[CrossRef]

M. Bertero, P. Boccacci, M. Defrise, C. De Mol, and E. Pike, “Super-resolution in confocal scanning microscopy: II. The incoherent case,” Inverse Probl.5(4), 441–461 (1989).
[CrossRef]

M. Defrise and C. Mol, “Super-resolution in confocal scanning microscopy: generalized inversion formulae,” Inverse Probl.8(2), 175–185 (1992).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci.53(13), 8139–8145 (2012).
[CrossRef] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Ultrastruct. Res. (1)

S. E. Nilsson, “An Electron Microscopic Classification of the Retinal Receptors of the Leopard Frog (Rana Pipiens),” J. Ultrastruct. Res.10(5-6), 390–416 (1964).
[CrossRef] [PubMed]

Methods (1)

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

Micron (2)

M. Bertero and P. Boccacci, “Super-resolution in computational imaging,” Micron34(6-7), 265–273 (2003).
[CrossRef] [PubMed]

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008).
[CrossRef] [PubMed]

Nano Lett. (1)

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett.9(11), 3883–3889 (2009).
[CrossRef] [PubMed]

Nat. Methods (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008).
[CrossRef] [PubMed]

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (4)

M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002).
[CrossRef] [PubMed]

S. H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G. Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A.109(35), 13978–13983 (2012).
[CrossRef] [PubMed]

H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Natl. Acad. Sci. U.S.A.104(51), 20308–20313 (2007).
[CrossRef] [PubMed]

M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000).
[CrossRef]

Science (2)

S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Vision Res. (1)

P. A. Liebman and G. Entine, “Visual pigments of frog and tadpole (Rana pipiens),” Vision Res.8(7), 761–775 (1968).
[CrossRef] [PubMed]

Other (1)

T. Wilson, Confocal microscopy (Academic Press, London, 1990)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of experimental setup. OB: objective; CO: collimator; L1-L3: lens; and BS: beam splitter. Focal lengths of lenses L1, L2 and L3 are 200 mm, 40 mm and 150 mm, respectively. The objective is 5X (NA = 0.1). The light source is provided by the SLD with center wavelength λ = 830 nm and bandwidth Δλ = 60 nm. The theoretical resolution of this system is 0.61λ/NA = 5 μm.

Fig. 2
Fig. 2

Computational simulation of the VSD based super-resolution imaging. λ = 830 nm, NA = 0.1 and incoherent illumination was assumed. The resolution of this system was 0.61λ/NA = 5 μm. (A) Sample of sinusoidal stripes. The period was 2.5 μm. (B) Normalized spectra of the sample and the PSF of the system on x dimension. The PSF was defined by Eq. (1). (C) Conventional SLM image. (D) Normalized spectrum of the image (C) on x dimension. (E) Diffraction map of the sampling point at the center of the sample (A). (F)-(H) superimposed images [see Eq. (7)] between the diffraction map (E) and the sinusoidal maps with orientation angle θ = 0, 60° and 120°, respectively. (I) Reconstructed super-resolution image. The background of the image was removed. (J) Normalized spectrum of the image (I) on x dimension. Scale bars indicate 10 μm.

Fig. 3
Fig. 3

Implementation of the VSD based super-resolution imaging on the resolution test target. (A) Image of the test target acquired by conventional SLM. (B) Super-resolution image by VSD reconstruction. (C) Normalized intensity curves along x axis. The white curve was normalized intensity along x direction of the area specified by white rectangle in (A). The green curve was normalized intensity along x direction of the area specified by green rectangle in (B). (D) Normalized intensity curves along x axis. The blue curve was normalized intensity along y direction of the area specified by blue rectangle in (A). The red curve was normalized intensity along y direction of the area specified by red rectangle in (B).

Fig. 4
Fig. 4

VSD based super-resolution imaging of freshly isolated frog retina. (A) Image of the retina acquired by conventional SLM. (B) Super-resolution image of the retina by VSD reconstruction. (C) Reflectance profiles of the white and red line areas in A and B. The white curve and the red curve were normalized intensity profiles along the white line in (A) and the red line in (B), respectively.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

h il ( x,y )= h de ( x,y )= Ω 2 π ( J 1 ( Ωρ ) Ωρ ) 2
R=0.61λ/NA
f c =1/R
f c f f c
I non ( x,y, x 0 , y 0 )= I des ( x x 0 ,y y 0 , x 0 , y 0 )
I non ( x,y, x 0 , y 0 )= h il ( μ x 0 ,ν y 0 ) s( μ,ν ) h de ( xμ,yν )dμdν
I mul ( x,y, x 0 , y 0 )= I non ( x,y, x 0 , y 0 )m( x,y )
m( x,y )=cos[ 2π f 0 ( xcosθ+ysinθ )+α ]
f 0 = f c
p( x 0 , y 0 )= I mul ( x,y, x 0 , y 0 ) dxdy
p( x 0 , y 0 )= h il ( μ x 0 ,ν y 0 )s( μ,ν ) h de ( xμ,yν )m(x,y)dμdν dxdy = h il ( μ x 0 ,ν y 0 )s( μ,ν )[ h de ( μx,νy ) m(x,y)dxdy ]dμdν = h il ( x 0 , y 0 ){ s( x 0 , y 0 )[ h de ( x 0 , y 0 )m( x 0 , y 0 ) ] }
p( x 0 , y 0 )={ [ m( x 0 , y 0 ) h il ( x 0 , y 0 ) ]s( x 0 , y 0 ) } h de ( x 0 , y 0 )
p ˜ ( f x , f y )=ft[ p( x o , y 0 ) ]= h ˜ il ( f x , f y ){ s ˜ ( f x , f y )[ h ˜ de ( f x , f y ) m ˜ ( f x , f y ) ] }
m ˜ ( f x , f y )= 1 2 [ σ( f x f 0 cosθ, f y f 0 sinθ ) e iα +σ( f x + f 0 cosθ, f y + f 0 sinθ ) e iα ]
p ˜ ( f x , f y )= h ˜ il ( f x , f y )[ s ˜ ( f x f 0 cosθ, f y f 0 sinθ ) e iα + s ˜ ( f x + f 0 cosθ, f y + f 0 sinθ ) e iα ]
2 f c f2 f c
m( x,y )=1+cos[ 2π f 0 ( xcosθ+ysinθ )+α ]
p ˜ ( f x , f y )= h ˜ il ( f x , f y ) s ˜ ( f x ,  f y ) +0.5 h ˜ il ( f x , f y ) s ˜ ( f x f 0 cosθ, f y f 0 sinθ ) e iα +0.5 h ˜ il ( f x , f y ) s ˜ ( f x + f 0 cosθ, f y + f 0 sinθ ) e iα

Metrics