Abstract

In a blood-lipid liquid phantom the prototype near-infrared spectroscopy oximeter OxyPrem was calibrated against the INVOS® 5100c adult sensor in respect to values of regional tissue oxygen haemoglobin saturation (rStO2) for possible inclusion in the randomised clinical trial - SafeBoosC. In addition different commercial NIRS oximeters were compared on changing haemoglobin oxygen saturation and compared against co-oximetry. The best calibration was achieved with a simple offset and a linear scaling of the OxyPrem rStO2 values. The INVOS adult and pediatric sensor gave systematically different values, while the difference between the NIRO® 300 and the two INVOS sensors were magnitude dependent. The co-oximetry proved unreliable on such low haemoglobin and high Intralipid levels.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
    [CrossRef] [PubMed]
  2. G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philos Transact A Math Phys Eng. Sci.369, 4440–4451 (2011).
  3. S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
    [PubMed]
  4. W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
    [CrossRef] [PubMed]
  5. K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter,” J. Perinatol.26(10), 628–635 (2006).
    [CrossRef] [PubMed]
  6. N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
    [CrossRef] [PubMed]
  7. K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
    [CrossRef] [PubMed]
  8. N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
    [CrossRef] [PubMed]
  9. P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the Cas Neonatal NIRS System by Monitoring VV-ECMO Patients,” in Advances in Experimental Medicine and Biology, P. Okunieff, J. Williams, and Y. Chen, eds. Advances in Experimental Medicine and Biology (Springer-Verlag, 2005), Vol. 566, pp. 195–201.
  10. P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
    [CrossRef] [PubMed]
  11. T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
    [CrossRef]
  12. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
    [CrossRef]
  13. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
    [CrossRef] [PubMed]
  14. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  15. A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005).
    [CrossRef] [PubMed]
  16. M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express13(13), 4828–4842 (2005).
    [CrossRef] [PubMed]
  17. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
    [CrossRef] [PubMed]
  18. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
    [CrossRef] [PubMed]
  19. A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
    [CrossRef] [PubMed]
  20. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
    [CrossRef] [PubMed]
  21. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
    [CrossRef] [PubMed]
  22. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
    [CrossRef] [PubMed]
  23. N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
    [CrossRef] [PubMed]
  24. T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
    [CrossRef] [PubMed]
  25. N. C. Brun and G. Greisen, “Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures,” Pediatr. Res.36(1 Pt 1), 20–24 (1994).
    [CrossRef] [PubMed]
  26. J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009).
    [PubMed]
  27. S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
    [CrossRef]
  28. D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999).
    [CrossRef]
  29. C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
    [CrossRef] [PubMed]
  30. S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
    [CrossRef] [PubMed]
  31. A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
    [CrossRef] [PubMed]
  32. D. Wallace, B. Barbieri, and S. R. Hintz, “Neonatal cerebral oxygenation measurements and the effects of curvature on frequncy domain multiple distance near infrared spectroscopy,” in Biomedical Optical Spectroscopy and Diagnostics, T. Li, ed., Vol. 38 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper SuF1. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-2000-SuF1
  33. A. Cerussi, J. Maier, S. Fantini, M. A. Franceschini, and E. Gratton, The Frequency-Domain Multi-Distance Method in the Presence of Curved Boundaries,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), paper AP9. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-1996-AP9
  34. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem.37(9), 1633–1638 (1991).
    [PubMed]
  35. P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
    [CrossRef] [PubMed]
  36. J. F. Hoffman and S. Inoué, “Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells,” Proc. Natl. Acad. Sci. U.S.A.103(8), 2971–2976 (2006).
    [CrossRef] [PubMed]
  37. D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
    [CrossRef] [PubMed]
  38. P. E. Bickler, J. R. Feiner, H. Eilers, and M. Rollins, “Performance of 5 Cerebral Oximeters During Hypoxia in Healthy Volunteers,” presented at the American Society of Anesthesiologists Annual Meeting Poster session, Chicago, Illinois, US, 15 - 19 Oct., 2011.
  39. A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
    [CrossRef] [PubMed]
  40. M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
    [CrossRef] [PubMed]
  41. K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth Analg 94, 586–90; table of contents (2002).
    [CrossRef]
  42. M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
    [CrossRef] [PubMed]
  43. N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
    [CrossRef] [PubMed]
  44. G. D. Lewis and H. F. Stoddart, “Method and Appartus for in vivo Optical Spectroscopic Examination,” U.S. patent US5139025 (August 18, 1992).
  45. G. D. Lewis, W. P. Messing, and M. C. Stewart, “Optical Cerebral Oximeter,” U.S. patent US5902235 (May 11, 1999).
  46. R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
    [CrossRef] [PubMed]
  47. S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express2(11), 3047–3057 (2011).
    [CrossRef] [PubMed]
  48. A. Denault, A. Deschamps, and J. M. Murkin, “A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy,” Semin. Cardiothorac. Vasc. Anesth.11(4), 274–281 (2007).
    [PubMed]
  49. J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
    [CrossRef] [PubMed]

2013 (2)

A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
[CrossRef] [PubMed]

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

2012 (2)

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

2011 (5)

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philos Transact A Math Phys Eng. Sci.369, 4440–4451 (2011).

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express2(11), 3047–3057 (2011).
[CrossRef] [PubMed]

2010 (2)

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

2009 (1)

J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009).
[PubMed]

2008 (2)

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Denault, A. Deschamps, and J. M. Murkin, “A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy,” Semin. Cardiothorac. Vasc. Anesth.11(4), 274–281 (2007).
[PubMed]

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

2006 (2)

J. F. Hoffman and S. Inoué, “Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells,” Proc. Natl. Acad. Sci. U.S.A.103(8), 2971–2976 (2006).
[CrossRef] [PubMed]

K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter,” J. Perinatol.26(10), 628–635 (2006).
[CrossRef] [PubMed]

2005 (7)

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005).
[CrossRef] [PubMed]

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express13(13), 4828–4842 (2005).
[CrossRef] [PubMed]

2004 (1)

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
[CrossRef] [PubMed]

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
[CrossRef] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

2001 (1)

A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
[CrossRef] [PubMed]

2000 (1)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

1999 (3)

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999).
[CrossRef]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

1996 (1)

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

1995 (1)

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

1994 (1)

N. C. Brun and G. Greisen, “Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures,” Pediatr. Res.36(1 Pt 1), 20–24 (1994).
[CrossRef] [PubMed]

1991 (2)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem.37(9), 1633–1638 (1991).
[PubMed]

H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

1986 (1)

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
[CrossRef] [PubMed]

Abdul-Khaliq, H.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

Adams, S. J.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Aggarwal, A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

Aladangady, N.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Anderson, L. D.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Arvin, K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Austin, T.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Baenziger, O.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Bainbridge, D.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Balmer, C.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Barbaut, X.

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Barbieri, B.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999).
[CrossRef]

Bauersfeld, U.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Beilman, G. J.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Benders, M.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Berger, F.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Biallas, M.

A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
[CrossRef] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

Bissonnette, B.

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

Blackstock, D.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
[CrossRef] [PubMed]

Boas, D. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Bohn, D.

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

Bortfeld, H.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Bourguignon, L.

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Brandner, A.

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

Broadhead, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Brun, N. C.

N. C. Brun and G. Greisen, “Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures,” Pediatr. Res.36(1 Pt 1), 20–24 (1994).
[CrossRef] [PubMed]

Bucher, H. U.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Bucher, H.-U.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem.37(9), 1633–1638 (1991).
[PubMed]

Cabañas, F.

A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
[CrossRef] [PubMed]

Carp, S. A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

Cerussi, A. E.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999).
[CrossRef]

Charlton, G. A.

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

Christensen, R. D.

J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009).
[PubMed]

Claris, O.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Cleland, A.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Coles, J.

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

Cooper, C. E.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Cope, M.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
[CrossRef] [PubMed]

Costeloe, K.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Daubeney, P. E.

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

Dehaes, M.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

Delpy, D. T.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
[CrossRef] [PubMed]

Dempsey, E. M.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Denault, A.

A. Denault, A. Deschamps, and J. M. Murkin, “A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy,” Semin. Cardiothorac. Vasc. Anesth.11(4), 274–281 (2007).
[PubMed]

Deschamps, A.

A. Denault, A. Deschamps, and J. M. Murkin, “A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy,” Semin. Cardiothorac. Vasc. Anesth.11(4), 274–281 (2007).
[PubMed]

Diamond, S. G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Dietz, V.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Dimofte, A.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005).
[CrossRef] [PubMed]

Ducher, M.

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Dullenkopf, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
[CrossRef] [PubMed]

Elwell, C.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Elwell, C. E.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Esposito, A.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Ewert, P.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

Fantini, S.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999).
[CrossRef]

Fauchère, J.-C.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

Fenoglio, A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

Finlay, J. C.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005).
[CrossRef] [PubMed]

Fleck, T.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

Fox, S.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Franceschini, M. A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Frey, B.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
[CrossRef] [PubMed]

Fumagalli, M.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Furuya, H.

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Gagnon, F. A.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
[CrossRef] [PubMed]

Gagnon, R. E.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
[CrossRef] [PubMed]

Gayá, F.

A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
[CrossRef] [PubMed]

Gerber, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
[CrossRef] [PubMed]

German, D.

Gilder, F.

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

Giller, C.

Gluud, C.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Goutelle, S.

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Grant, P. E.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Greisen, G.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm,” Biomed. Opt. Express2(11), 3047–3057 (2011).
[CrossRef] [PubMed]

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philos Transact A Math Phys Eng. Sci.369, 4440–4451 (2011).

N. C. Brun and G. Greisen, “Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures,” Pediatr. Res.36(1 Pt 1), 20–24 (1994).
[CrossRef] [PubMed]

Hagmann, C.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Hellström-Westas, L.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Henry, E.

J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009).
[PubMed]

Hirao, K.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Hoffman, J. F.

J. F. Hoffman and S. Inoué, “Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells,” Proc. Natl. Acad. Sci. U.S.A.103(8), 2971–2976 (2006).
[CrossRef] [PubMed]

Hueber, D. M.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999).
[CrossRef]

Hyttel-Sorensen, S.

Hyttel-Sørensen, S.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Iglesias, I.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

Inoue, S.

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Inoué, S.

J. F. Hoffman and S. Inoué, “Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells,” Proc. Natl. Acad. Sci. U.S.A.103(8), 2971–2976 (2006).
[CrossRef] [PubMed]

Irwin, B.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Iwata, M.

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Janke, E.

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

Jenny, C.

A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
[CrossRef] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

Johns, M.

Jopling, J.

J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009).
[PubMed]

Kaminski, C. F.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

Kawaguchi, M.

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Keel, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Kirkpatrick, P.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Knirsch, W.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Kobayashi, Y.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Kondo, M.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Kretschmar, O.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Krishnamoorthy, K. K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Kurth, C. D.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

Kurumatani, N.

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Lange, P. E.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

LeBlanc, J. G.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
[CrossRef] [PubMed]

Lemmers, P.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Leung, T.

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philos Transact A Math Phys Eng. Sci.369, 4440–4451 (2011).

Leung, T. S.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Lew, V. L.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Liu, H.

Macnab, A. J.

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
[CrossRef] [PubMed]

Maire, P.

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Martelli, F.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Matcher, S. J.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Maurin, M.

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Mauritz, J. M. A.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem.37(9), 1633–1638 (1991).
[PubMed]

Metz, A. J.

A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
[CrossRef] [PubMed]

Miyasaka, K.

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

Moes, C. J.

Montenegro, L. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

Morris, N.

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

Mowlem, J. D.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Muehlemann, T.

A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
[CrossRef] [PubMed]

Müller, W.

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

Murkin, J. M.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

A. Denault, A. Deschamps, and J. M. Murkin, “A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy,” Semin. Cardiothorac. Vasc. Anesth.11(4), 274–281 (2007).
[PubMed]

Myers, D. E.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Nagano, K.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Nagdyman, N.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

Nahid, K.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

Naulaers, G.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Nicolson, S. C.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

Ninni, P. D.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

Novick, R. J.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Okada, H.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Onishi, S.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Ortner, J. P.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Ozaki, T.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Patel, M.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

Pellicer, A.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
[CrossRef] [PubMed]

Peters, B.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

Peters, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Pichler, G.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

Pilkington, S. N.

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

Pocivalnik, M.

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

Prahl, S. A.

Quantz, M.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Quero, J.

A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
[CrossRef] [PubMed]

Rais-Bahrami, K.

K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter,” J. Perinatol.26(10), 628–635 (2006).
[CrossRef] [PubMed]

Reynolds, E. O.

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
[CrossRef] [PubMed]

Riera, J.

Rivera, O.

K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter,” J. Perinatol.26(10), 628–635 (2006).
[CrossRef] [PubMed]

Roche-Labarbe, N.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

Roll, C.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Rome, J.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

Rougier, F.

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Sasaoka, N.

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Schaefer, B.

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Schmitz, A.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Schubert, S.

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

Seear, R.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Seifert, R. P.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Shimizu, N.

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

Short, B. L.

K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter,” J. Perinatol.26(10), 628–635 (2006).
[CrossRef] [PubMed]

Smith, D. C.

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

Smith, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Sorensen, L. C.

Steven, J. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

Støy, L. S.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Stutz, K.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Surova, A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

Suzuki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Swietach, P.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Takasaki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Tax, N.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

Thaker, S.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Thavasothy, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Themelis, G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

Tiffert, T.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Tomaske, M.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Trajkovic, I.

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

Urlesberger, B.

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

Valverde, E.

A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
[CrossRef] [PubMed]

van Bel, F.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

van Gemert, M. J.

van Marie, J.

van Oeveren, W.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

van Staveren, H. J.

Vaughan-Jones, R. D.

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

von Siebenthal, K.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Watzman, H. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

Webber, S. A.

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

Weiss, M.

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
[CrossRef] [PubMed]

Wiedmeier, S. E.

J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009).
[PubMed]

Wolf, M.

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
[CrossRef] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philos Transact A Math Phys Eng. Sci.369, 4440–4451 (2011).

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Wray, S.

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
[CrossRef] [PubMed]

Wyatt, J. S.

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
[CrossRef] [PubMed]

Yasuda, S.

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Yoshitani, K.

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Zaccanti, G.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

Zhu, T. C.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005).
[CrossRef] [PubMed]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem.37(9), 1633–1638 (1991).
[PubMed]

Zotter, H.

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

Acta Anaesthesiol. Scand. (1)

W. Knirsch, K. Stutz, O. Kretschmar, M. Tomaske, C. Balmer, A. Schmitz, F. Berger, U. Bauersfeld, M. Weiss, and Working Group on Non-Invasive Haemodynamic Monitoring in Paediatrics, “Regional cerebral oxygenation by NIRS does not correlate with central or jugular venous oxygen saturation during interventional catheterisation in children,” Acta Anaesthesiol. Scand.52(10), 1370–1374 (2008).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (1)

A. J. Metz, M. Biallas, C. Jenny, T. Muehlemann, and M. Wolf, “The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy,” Adv. Exp. Med. Biol.765, 169–175 (2013).
[CrossRef] [PubMed]

Anaesthesia (1)

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002).
[CrossRef] [PubMed]

Anesth. Analg. (1)

J. M. Murkin, S. J. Adams, R. J. Novick, M. Quantz, D. Bainbridge, I. Iglesias, A. Cleland, B. Schaefer, B. Irwin, and S. Fox, “Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study,” Anesth. Analg.104(1), 51–58 (2007).
[CrossRef] [PubMed]

Anesthesiology (1)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000).
[CrossRef] [PubMed]

Ann. Thorac. Surg. (1)

P. E. Daubeney, S. N. Pilkington, E. Janke, G. A. Charlton, D. C. Smith, and S. A. Webber, “Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry,” Ann. Thorac. Surg.61(3), 930–934 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Br. J. Anaesth. (1)

K. Yoshitani, M. Kawaguchi, M. Iwata, N. Sasaoka, S. Inoue, N. Kurumatani, and H. Furuya, “Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia,” Br. J. Anaesth.94(3), 341–346 (2005).
[CrossRef] [PubMed]

Childs Nerv. Syst. (1)

N. Shimizu, F. Gilder, B. Bissonnette, J. Coles, D. Bohn, and K. Miyasaka, “Brain tissue oxygenation index measured by near infrared spatially resolved spectroscopy agreed with jugular bulb oxygen saturation in normal pediatric brain: a pilot study,” Childs Nerv. Syst.21(3), 181–184 (2005).
[CrossRef] [PubMed]

Clin. Chem. (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem.37(9), 1633–1638 (1991).
[PubMed]

Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (1)

T. Kusaka, K. Isobe, K. Nagano, K. Okubo, S. Yasuda, M. Kondo, S. Itoh, K. Hirao, and S. Onishi, “Quantification of cerebral oxygenation by full-spectrum near-infrared spectroscopy using a two-point method,” Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.132(1), 121–132 (2002).
[CrossRef]

Dan Med J (1)

S. Hyttel-Sørensen, T. Austin, F. van Bel, M. Benders, O. Claris, E. M. Dempsey, M. Fumagalli, C. Gluud, C. Hagmann, L. Hellström-Westas, P. Lemmers, G. Naulaers, W. van Oeveren, A. Pellicer, G. Pichler, C. Roll, L. S. Støy, M. Wolf, and G. Greisen, “Clinical use of cerebral oximetry in extremely preterm infants is feasible,” Dan Med J60(1), A4533 (2013).
[PubMed]

Fundam. Clin. Pharmacol. (1)

S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, “The Hill equation: a review of its capabilities in pharmacological modelling,” Fundam. Clin. Pharmacol.22(6), 633–648 (2008).
[CrossRef] [PubMed]

Hum. Brain Mapp. (1)

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp.31(3), 341–352 (2010).
[CrossRef] [PubMed]

Intensive Care Med. (1)

N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011).
[CrossRef] [PubMed]

M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

J. Clin. Monit. Comput. (1)

R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7-8), 385–391 (2002).
[CrossRef] [PubMed]

J. Perinatol. (1)

K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of a noninvasive neonatal optical cerebral oximeter in veno-venous ECMO patients with a cephalad catheter,” J. Perinatol.26(10), 628–635 (2006).
[CrossRef] [PubMed]

J. Physiol. (1)

P. Swietach, T. Tiffert, J. M. A. Mauritz, R. Seear, A. Esposito, C. F. Kaminski, V. L. Lew, and R. D. Vaughan-Jones, “Hydrogen ion dynamics in human red blood cells,” J. Physiol.588(Pt 24), 4995–5014 (2010).
[CrossRef] [PubMed]

Lancet (1)

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry,” Lancet2(8515), 1063–1066 (1986).
[CrossRef] [PubMed]

Opt. Express (1)

Paediatr. Anaesth. (2)

N. Morris, G. Pichler, M. Pocivalnik, A. Brandner, W. Müller, and B. Urlesberger, “Cerebral regional oxygen saturation (crSO2): are different sensors comparable?” Paediatr. Anaesth.no (2012).
[CrossRef] [PubMed]

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003).
[CrossRef] [PubMed]

Pediatr. Neurol. (1)

A. Pellicer, E. Valverde, F. Gayá, J. Quero, and F. Cabañas, “Postnatal adaptation of brain circulation in preterm infants,” Pediatr. Neurol.24(2), 103–109 (2001).
[CrossRef] [PubMed]

Pediatr. Res. (4)

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Pediatr. Res.58(3), 568–573 (2005).
[CrossRef] [PubMed]

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

N. C. Brun and G. Greisen, “Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures,” Pediatr. Res.36(1 Pt 1), 20–24 (1994).
[CrossRef] [PubMed]

Pediatrics (1)

J. Jopling, E. Henry, S. E. Wiedmeier, and R. D. Christensen, “Reference Ranges for Hematocrit and Blood Hemoglobin Concentration During the Neonatal Period: Data From a Multihospital Health Care System,” Pediatrics123(2), e333–e337 (2009).
[PubMed]

Philos Transact A Math Phys Eng. Sci. (1)

G. Greisen, T. Leung, and M. Wolf, “Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care?” Philos Transact A Math Phys Eng. Sci.369, 4440–4451 (2011).

Phys. Med. Biol. (3)

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. F. Hoffman and S. Inoué, “Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells,” Proc. Natl. Acad. Sci. U.S.A.103(8), 2971–2976 (2006).
[CrossRef] [PubMed]

Proc. SPIE (2)

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995).
[CrossRef]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE3597, 582–592 (1999).
[CrossRef]

Semin. Cardiothorac. Vasc. Anesth. (1)

A. Denault, A. Deschamps, and J. M. Murkin, “A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy,” Semin. Cardiothorac. Vasc. Anesth.11(4), 274–281 (2007).
[PubMed]

SPIE (1)

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE3597, 618–631 (1999).
[CrossRef]

Other (7)

P. E. Bickler, J. R. Feiner, H. Eilers, and M. Rollins, “Performance of 5 Cerebral Oximeters During Hypoxia in Healthy Volunteers,” presented at the American Society of Anesthesiologists Annual Meeting Poster session, Chicago, Illinois, US, 15 - 19 Oct., 2011.

D. Wallace, B. Barbieri, and S. R. Hintz, “Neonatal cerebral oxygenation measurements and the effects of curvature on frequncy domain multiple distance near infrared spectroscopy,” in Biomedical Optical Spectroscopy and Diagnostics, T. Li, ed., Vol. 38 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), paper SuF1. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-2000-SuF1

A. Cerussi, J. Maier, S. Fantini, M. A. Franceschini, and E. Gratton, The Frequency-Domain Multi-Distance Method in the Presence of Curved Boundaries,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca and D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), paper AP9. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-1996-AP9

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the Cas Neonatal NIRS System by Monitoring VV-ECMO Patients,” in Advances in Experimental Medicine and Biology, P. Okunieff, J. Williams, and Y. Chen, eds. Advances in Experimental Medicine and Biology (Springer-Verlag, 2005), Vol. 566, pp. 195–201.

K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth Analg 94, 586–90; table of contents (2002).
[CrossRef]

G. D. Lewis and H. F. Stoddart, “Method and Appartus for in vivo Optical Spectroscopic Examination,” U.S. patent US5139025 (August 18, 1992).

G. D. Lewis, W. P. Messing, and M. C. Stewart, “Optical Cerebral Oximeter,” U.S. patent US5902235 (May 11, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The blood-lipid phantom seen from above before the fluid level was increased to well above the sensor level. The sensors are from the top and clock-wise: OxyPrem 1, OxyPrem 2, INVOS adult, NIRO, and INVOS pediatric. Only OxyPrem 2 was used for data collection. The tubings to and from the oxygenator were placed on both sides of the OxyPrem 1.

Fig. 2
Fig. 2

A schematic presentation of the phantom setup. White tubes contain blood. Gray tubes contain gas. The NIRS sensors and the heat exchanger are not presented in the diagram.

Fig. 3
Fig. 3

Linear regression on INVOS adult SomaSensor vs. the transformed OxyPrem SO2

Fig. 4
Fig. 4

Time-series of SO2 for each of the commercial NIRS devices and the blood samples. Important aspects: SO2 values differ in the low range between NIRO and INVOS; INVOS adult sensor has lower values than the neonatal sensor; and INVOS is clipping the values at 15% and 95%.

Fig. 5
Fig. 5

Linear regression on INVOS adult SomaSensor vs. INVOS Pediatric SomaSensor (upper plot) and NIRO 300 (lower plot) SO2, respectively.

Tables (1)

Tables Icon

Table 1 Co-oximetry pre- and post-spining pO2 and SO2

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R= i=1 i=21 m=1 m=3 w criterion m (Δ criterion m [i] ) 2

Metrics