Abstract

Light sheet microscopy allows rapid imaging of three-dimensional fluorescent samples, using illumination and detection axes that are orthogonal. For imaging large samples, this often forces the objective to be tilted relative to the sample’s surface; for samples that are not precisely matched to the immersion medium index, this tilt introduces aberrations. Here we calculate the nature of these aberrations for a simple tissue model, and show that a low-dimensional parametrization of these aberrations facilitates online correction via a deformable mirror without introduction of beads or other fiducial markers. We use this approach to demonstrate improved image quality in living tissue.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Miniaturization and defocus correction for objective-coupled planar illumination microscopy

Diwakar Turaga and Timothy E. Holy
Opt. Lett. 33(20) 2302-2304 (2008)

Image-based calibration of a deformable mirror in wide-field microscopy

Diwakar Turaga and Timothy E. Holy
Appl. Opt. 49(11) 2030-2040 (2010)

Adaptive optics enables 3D STED microscopy in aberrating specimens

Travis J. Gould, Daniel Burke, Joerg Bewersdorf, and Martin J. Booth
Opt. Express 20(19) 20998-21009 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt. 10, 44014 (2005).
    [Crossref] [PubMed]
  2. C. J. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
    [Crossref] [PubMed]
  3. J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
    [Crossref]
  4. P. A. Santi, “Light sheet fluorescence microscopy: a review,” J. Histochem. Cytochem. 59, 129–138 (2011).
    [Crossref] [PubMed]
  5. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
    [Crossref] [PubMed]
  6. D. Turaga and T. E. Holy, “Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging,” J. Neurosci. 32, 1612–1621 (2012).
    [Crossref] [PubMed]
  7. C. Bourgenot, C. D. Saunter, J. M. Taylor, J. M. Girkin, and G. D. Love, “3d adaptive optics in a light sheet microscope,” Opt. Express 20, 13252–13261 (2012).
    [Crossref] [PubMed]
  8. R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
    [Crossref] [PubMed]
  9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 3rd ed. (Cambridge University PressCambridge, 2007).
  10. D. Turaga and T. E. Holy, “Miniaturization and defocus correction for objective-coupled planar illumination microscopy,” Opt. Lett. 33, 2302–2304 (2008).
    [Crossref] [PubMed]
  11. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.
  12. J. L. F. de Meijere and C. H. F. Velzel, “Linear ray-propagation models in geometrical optics,” J. Opt. Soc. Am. A 4, 2162–2165 (1987).
    [Crossref]
  13. D. Turaga and T. E. Holy, “Image-based calibration of a deformable mirror in wide-field microscopy,” Appl. Opt. 49, 2030–2040 (2010).
    [Crossref] [PubMed]
  14. J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
    [Crossref] [PubMed]

2012 (3)

D. Turaga and T. E. Holy, “Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging,” J. Neurosci. 32, 1612–1621 (2012).
[Crossref] [PubMed]

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

C. Bourgenot, C. D. Saunter, J. M. Taylor, J. M. Girkin, and G. D. Love, “3d adaptive optics in a light sheet microscope,” Opt. Express 20, 13252–13261 (2012).
[Crossref] [PubMed]

2011 (1)

P. A. Santi, “Light sheet fluorescence microscopy: a review,” J. Histochem. Cytochem. 59, 129–138 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (3)

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[Crossref] [PubMed]

J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
[Crossref] [PubMed]

D. Turaga and T. E. Holy, “Miniaturization and defocus correction for objective-coupled planar illumination microscopy,” Opt. Lett. 33, 2302–2304 (2008).
[Crossref] [PubMed]

2005 (1)

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt. 10, 44014 (2005).
[Crossref] [PubMed]

1991 (1)

1987 (1)

Andilla, J.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Awwal, A.

J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.

Bourgenot, C.

de Meijere, J. L. F.

Decraemer, W. F.

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt. 10, 44014 (2005).
[Crossref] [PubMed]

Dirckx, J. J. J.

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt. 10, 44014 (2005).
[Crossref] [PubMed]

Ducommun, B.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 3rd ed. (Cambridge University PressCambridge, 2007).

Frongia, C.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Girkin, J. M.

Gu, M.

He, J.

J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
[Crossref] [PubMed]

Holekamp, T. F.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[Crossref] [PubMed]

Holy, T. E.

D. Turaga and T. E. Holy, “Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging,” J. Neurosci. 32, 1612–1621 (2012).
[Crossref] [PubMed]

D. Turaga and T. E. Holy, “Image-based calibration of a deformable mirror in wide-field microscopy,” Appl. Opt. 49, 2030–2040 (2010).
[Crossref] [PubMed]

D. Turaga and T. E. Holy, “Miniaturization and defocus correction for objective-coupled planar illumination microscopy,” Opt. Lett. 33, 2302–2304 (2008).
[Crossref] [PubMed]

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[Crossref] [PubMed]

Jorand, R.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Kim, S.

J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
[Crossref] [PubMed]

Kuypers, L. C.

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt. 10, 44014 (2005).
[Crossref] [PubMed]

Le Corre, G.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Lin, J. E.

J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
[Crossref]

Lobjois, V.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Lorenzo, C.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Love, G. D.

Ma, L.

J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
[Crossref] [PubMed]

Maandhui, A.

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Nakai, J.

J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
[Crossref] [PubMed]

Porter, J.

J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 3rd ed. (Cambridge University PressCambridge, 2007).

Queener, H. M.

J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
[Crossref]

Santi, P. A.

P. A. Santi, “Light sheet fluorescence microscopy: a review,” J. Histochem. Cytochem. 59, 129–138 (2011).
[Crossref] [PubMed]

Saunter, C. D.

Sheppard, C. J.

Taylor, J. M.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 3rd ed. (Cambridge University PressCambridge, 2007).

Thorn, K.

J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
[Crossref]

Turaga, D.

D. Turaga and T. E. Holy, “Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging,” J. Neurosci. 32, 1612–1621 (2012).
[Crossref] [PubMed]

D. Turaga and T. E. Holy, “Image-based calibration of a deformable mirror in wide-field microscopy,” Appl. Opt. 49, 2030–2040 (2010).
[Crossref] [PubMed]

D. Turaga and T. E. Holy, “Miniaturization and defocus correction for objective-coupled planar illumination microscopy,” Opt. Lett. 33, 2302–2304 (2008).
[Crossref] [PubMed]

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[Crossref] [PubMed]

Velzel, C. H. F.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 3rd ed. (Cambridge University PressCambridge, 2007).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.

Yu, C.

J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Biomed. Opt. (1)

J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt. 10, 44014 (2005).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

P. A. Santi, “Light sheet fluorescence microscopy: a review,” J. Histochem. Cytochem. 59, 129–138 (2011).
[Crossref] [PubMed]

J. Neurosci. (1)

D. Turaga and T. E. Holy, “Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging,” J. Neurosci. 32, 1612–1621 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Neuron (1)

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

PloS One (1)

R. Jorand, G. Le Corre, J. Andilla, A. Maandhui, C. Frongia, V. Lobjois, B. Ducommun, and C. Lorenzo, “Deep and clear optical imaging of thick inhomogeneous samples,” PloS One 7, e35795 (2012).
[Crossref] [PubMed]

Science (1)

J. He, L. Ma, S. Kim, J. Nakai, and C. Yu, “Encoding gender and individual information in the mouse vomeronasal organ,” Science 320, 535–538 (2008).
[Crossref] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 3rd ed. (Cambridge University PressCambridge, 2007).

J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of light-sheet imaging for extended samples. The sample is modeled as a flat interface, with the light sheet (cyan) entering at an angle. Emitted fluorescence from sample point x0 (green ray) is shown, propagating in the direction ê. The tissue normal is at an angle α relative to the optic axis . The sample has refractive index ns and the immersion fluid ni.

Fig. 2
Fig. 2

Back pupil correction, Eq. (15), for a = 0.37, a tilt angle α = 30°, and β = c 2 0, Eq. (19). The colorbar is scaled in relative units (left) and in μm of wavefront aberration (right) for the specific case of ε = 0.04 and dz = 100μm.

Fig. 3
Fig. 3

Magnitude of aberration coefficients, Eqs. (2130), as a function of the tilt angle α. The coefficients are displayed in units of A = εdz (left) and in μm of wavefront aberration (right) for the same parameters used in Fig. 2.

Fig. 4
Fig. 4

Aberration correction in OCPI microscopy. (a) A 0.2 μm bead in PDMS, dz = 80μm. (b) The same bead after aberration correction. (c) Neurons of the vomeronasal organ in a mouse expressing GCaMP2, dz = 50μm. (d) The same field as (c) after correction.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

s ( e ^ ) = c x 0 n ^ e ^ n ^ .
| x x 0 | + ε s ( e ^ ) | x ( x 0 + Δ x ) | + C
ε s ( e ^ ) C e ^ Δ x .
s = d cos θ cos α + sin θ sin α
d ( 1 θ 2 / 2 ) cos α + θ sin α
d cos α [ 1 θ tan α + 1 2 θ 2 ( 1 + 2 tan 2 α ) ]
Δ y = ε d z tan α , Δ z = ε d z ( 1 + 2 tan 2 α ) .
s = d cos θ cos α
d cos α [ 1 + 1 2 θ 2 ] .
Δ x = 0 , Δ z = ε d z .
Δ z ¯ = ε d z ( 1 + tan 2 α ) .
Φ ( v , u ) = ε d cos α 1 ( a v u ) 2 + sin α ( a v y u y )
= ε d z 1 ( a v u ) 2 + tan α ( a v y u y )
Φ ( v , u ) = A 1 ( a v u ) 2 + t ( a v y u y ) .
1 2 Φ ( v , 0 ) = A [ 1 1 a 2 v 2 + t a v y c 0 2 2 c 1 1 v y β ( 2 v 2 1 ) ] .
c 0 0 = 1 8 ( a 4 t 4 + 2 a 4 t 2 + 2 a 2 t 2 + a 4 + 2 a 2 + 8 ) ;
c 1 1 = a t ( 3 a 2 t 2 + 4 a 2 + 6 ) 3 ;
c 1 1 = 0 ;
c 2 0 / 3 = a 2 ( t 2 + 1 ) ( 3 a 2 t 2 + 3 a 2 + 4 ) 16 ;
c 2 2 / 6 = 0 ;
c 2 2 / 6 = a 2 t 2 ( 6 a 2 t 2 + 9 a 2 + 8 ) 16 ;
c 3 1 / 8 = a 3 t ( 3 t 2 + 4 ) 12 ;
c 3 1 / 8 = 0 ;
c 3 3 / 8 = a 3 t 3 4 ;
c 3 3 / 8 = 0 ;
c 4 0 / 5 = a 4 ( t 2 + 1 ) 2 16 ;
c 4 2 / 10 = 0 ;
c 4 2 / 10 = a 4 t 2 ( 2 t 2 + 3 ) 16 ;
c 4 4 / 10 = 0 ;
c 4 4 / 10 = a 4 t 4 8 .
ζ ( x 0 , x 1 ) = inf C S [ C ] ,
S [ C ] = d s L = d s n ( x ( s ) ) | x ˙ ( s ) | .
ζ tot ( x 0 , x 1 ) = inf C S tot = inf C ( S n + S ε ) ,
S tot [ C + δ C ] = S n [ C + δ C ] + S ε [ C + δ C ]
S n [ C ] + 1 2 S n [ C ] δ C 2 + S ε [ C ] + S ε [ C ] δ C + 1 2 S ε [ C ] δ C 2 .
L tot ( C + δ C ) L tot ( C ) + b δ C + a δ C 2 .
L tot ( C + δ C ) L tot ( C ) b 2 2 a .
ζ tot = S n [ C ] + S ε [ C ] .

Metrics